The (my) Bio-Imaging toolbox

- Crash course – Guillaume Jacquemet @guijacquemet This is a crash course and...

... I will most likely crash too

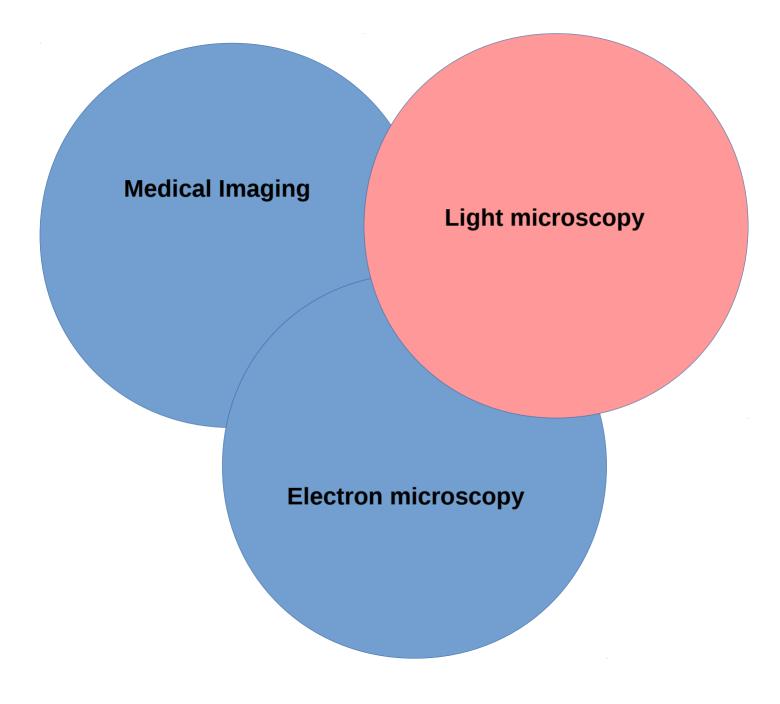
This is a toolbox, by no mean a comprehensive lecture

First and most important tool:

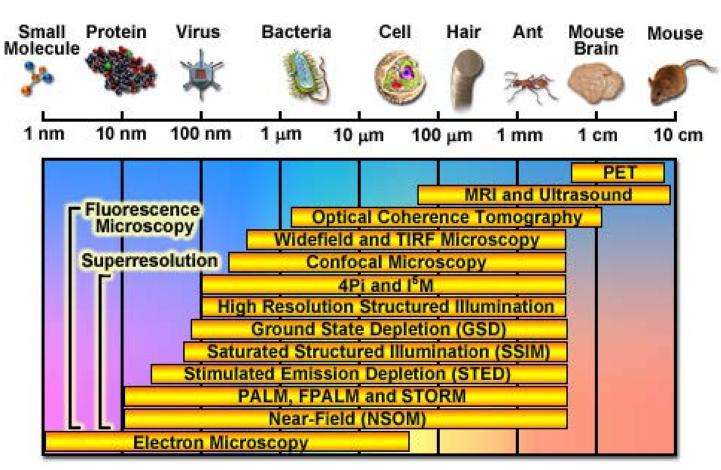
- Interact with your colleagues
- Help from the Facilities
- Help from social media

However some questions are too technicals / at the forefront of research

Use social media to ask experts:

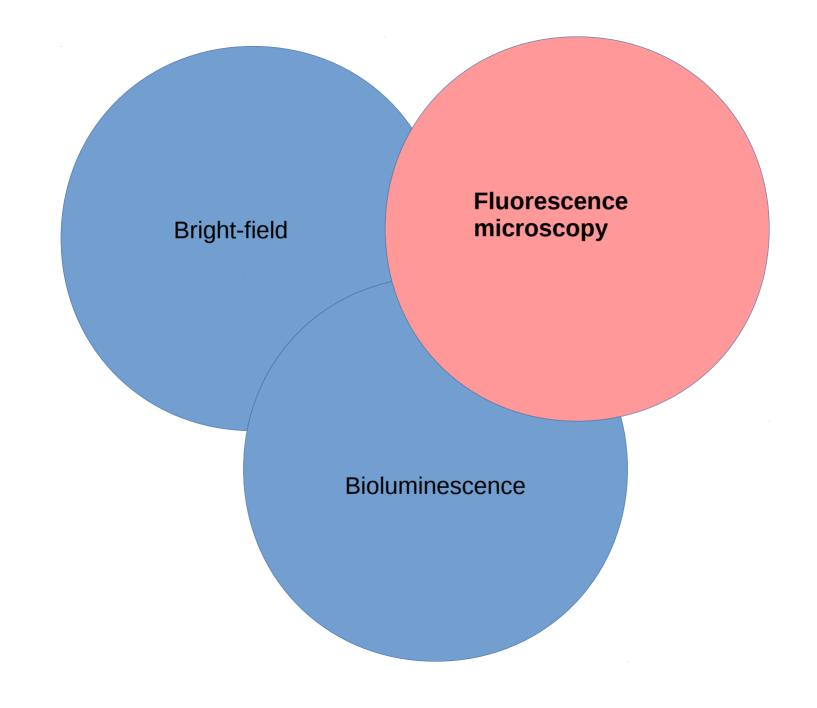

- Very large number of microscopists on twitter
- I now get most of my advices from there:

- objectives to buy / new dye for STED / software / new Fps New technologies.


Outline

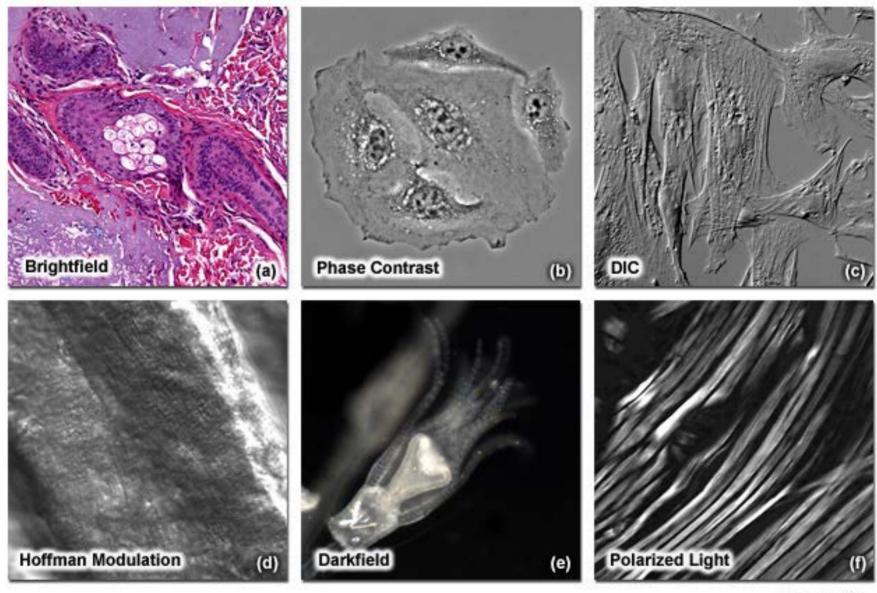
- Microscopy 101
- Embrace the future !
- Basic Theory
- Microscopes & hardware
- Sample preparation
- Live cell imaging
- Data analysis and softwares

Imaging techniques


Scale and Resolution

Spatial Resolution of Biological Imaging Techniques

Figure 1


Light microscopy

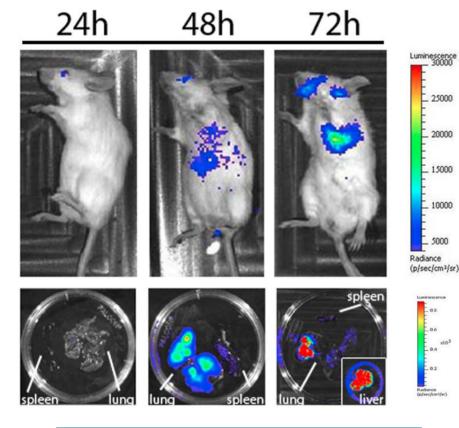
Bright-field microscopy

Bright-field microscopy

Contrast-Enhancing Techniques in Optical Microscopy

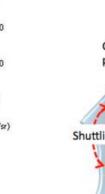
Figure 1

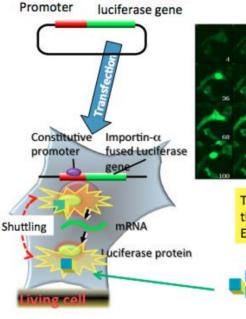
Bio-luminescence Microscopy



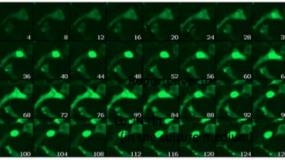
Luciferase + substrate = Light

Bio-luminescence Microscopy


In vivo imaging


Cellular reporters

Advantages


- Not Toxic !!
- Very long term imaging
- Light until substrate run out

Shuttling beetle

Appropriate

Time-lapse luminescence imaging of the nucleocytoplasmic shuttling of ELuc-fused importin- α in NIH3T3 cells

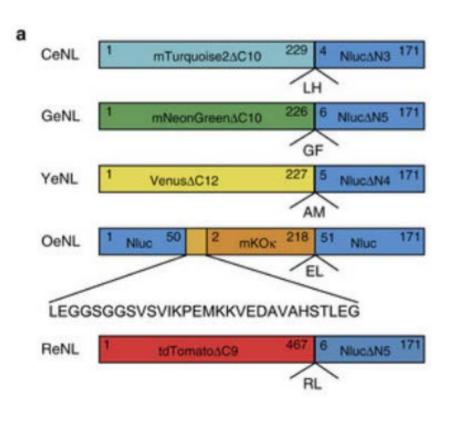
Luciferin (in the culture medium)

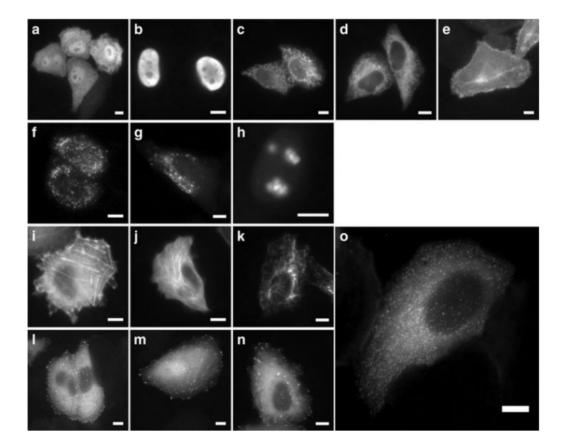
Limitations

- Poor resolution
- Everything shine at once
- One color
- Expensive detection system

Embrace the future

Received 12 Mar 2016 | Accepted 26 Oct 2016 | Published 14 Dec 2016

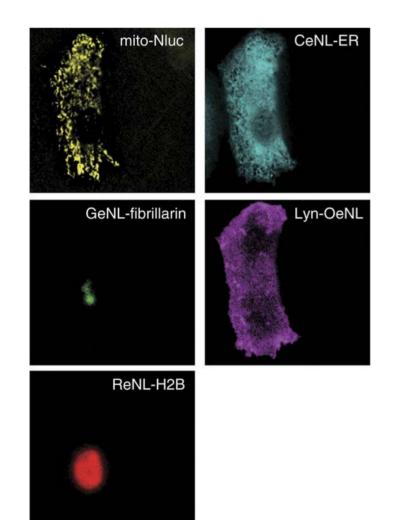

DOI: 10.1038/ncomms13718

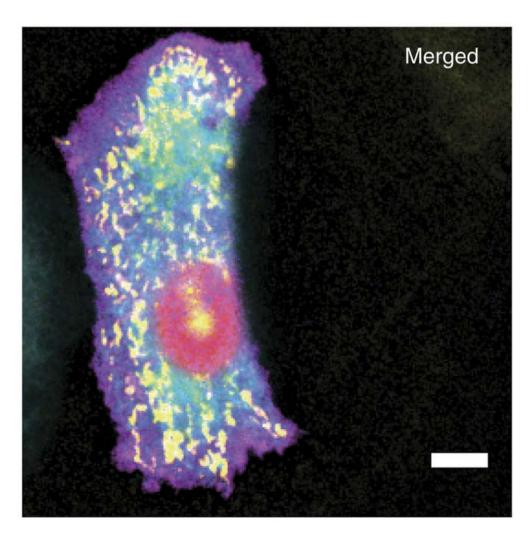

OPEN

Five colour variants of bright luminescent protein for real-time multicolour bioimaging

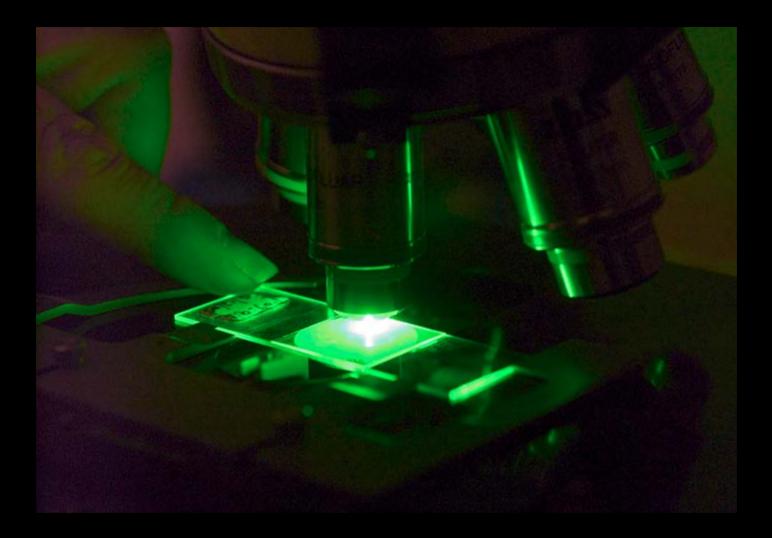
Kazushi Suzuki¹, Taichi Kimura², Hajime Shinoda¹, Guirong Bai³, Matthew J. Daniels⁴, Yoshiyuki Arai^{1,2,3}, Masahiro Nakano^{1,2,3} & Takeharu Nagai^{1,2,3}

FRET between luciferase and fluorescent proteins = multi color **luminescence**

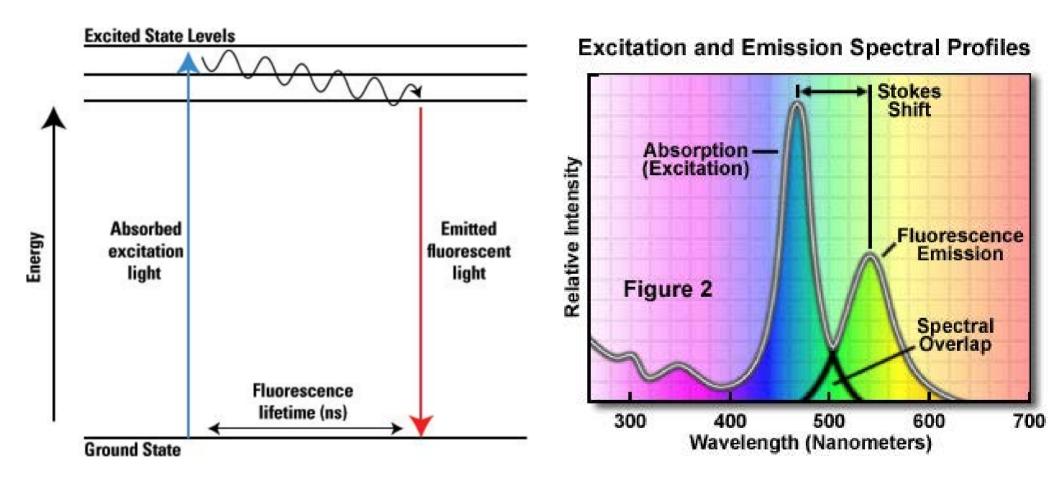

ARTICLE


Received 12 Mar 2016 | Accepted 26 Oct 2016 | Published 14 Dec 2016

OPEN


Five colour variants of bright luminescent protein for real-time multicolour bioimaging

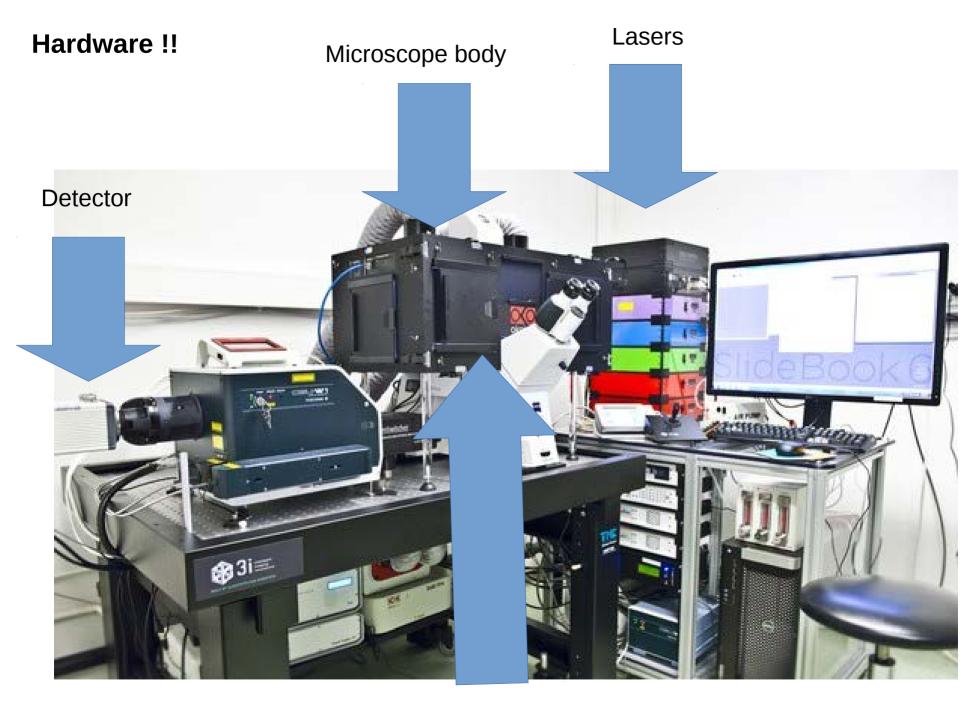
Kazushi Suzuki¹, Taichi Kimura², Hajime Shinoda¹, Guirong Bai³, Matthew J. Daniels⁴, Yoshiyuki Arai^{1,2,3}, Masahiro Nakano^{1,2,3} & Takeharu Nagai^{1,2,3}



Fluorescence microscopy

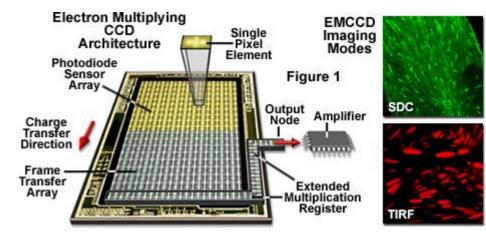
Fluorescence microscopy must know I: How it works

Fluorescence microscopy must know II : The law


Abbe Resolution x,y = $\lambda/2NA$

λ : wavelength (fluorescence)

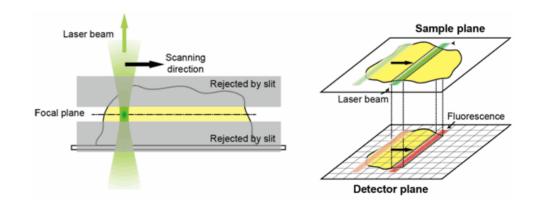
NA: numerical aperture of objective


- small wavelength (blue and green) result in higher resolution

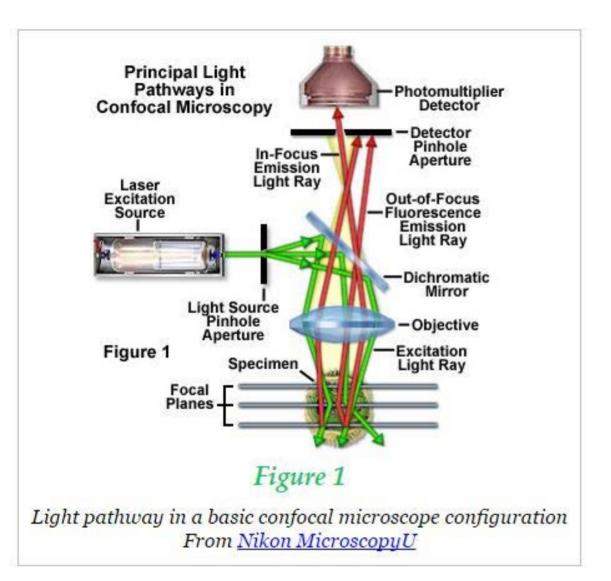
- Use high NA objective !!!

Objectives

Detection systems: Cameras vs detectors

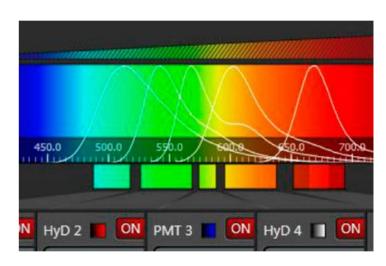

Camera

- ORCA camera: Not very sensitive, Large field of view, large dynamic range


- EMCCD camera: Very sensitive, small field of view, small dynamic range

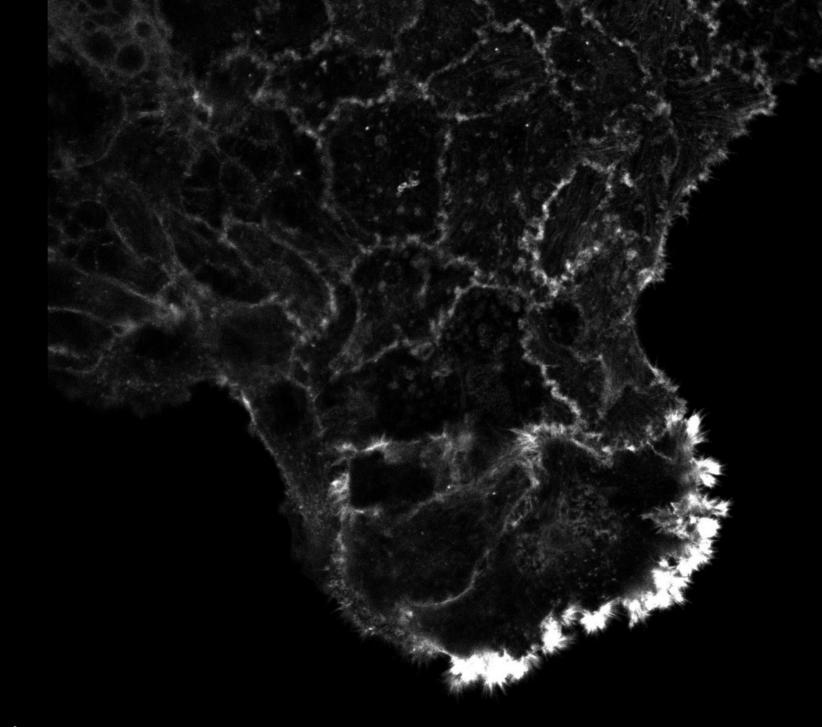
Detectors: Line based scanning detection system

- Very sensitive and tunable zoom, slow, noisy

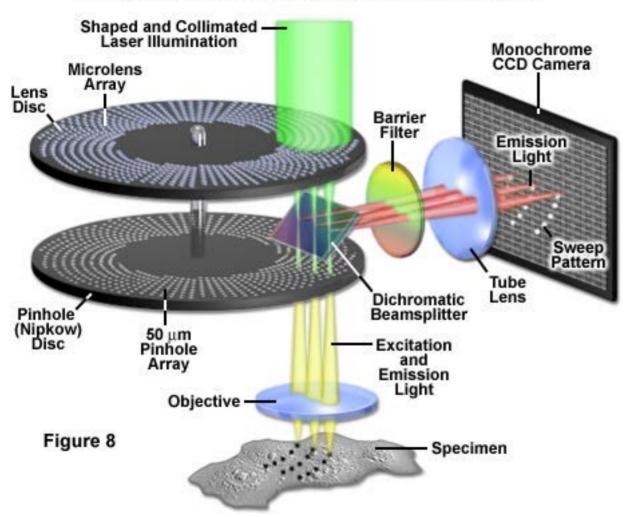


Confocal microscope (LSM 780)

- Adjustable Pinhole to remove out of focus light


- Tunable spectra detection

- Scanning-based detection
 - Sensitive
 - Tunable zoom
- Slow


https://www.microscopyu.com/techniques/confocal

Confocal

@guijacquemet

Spinning disk Confocal microscope

Yokogawa Spinning Disk Unit Optical Configuration

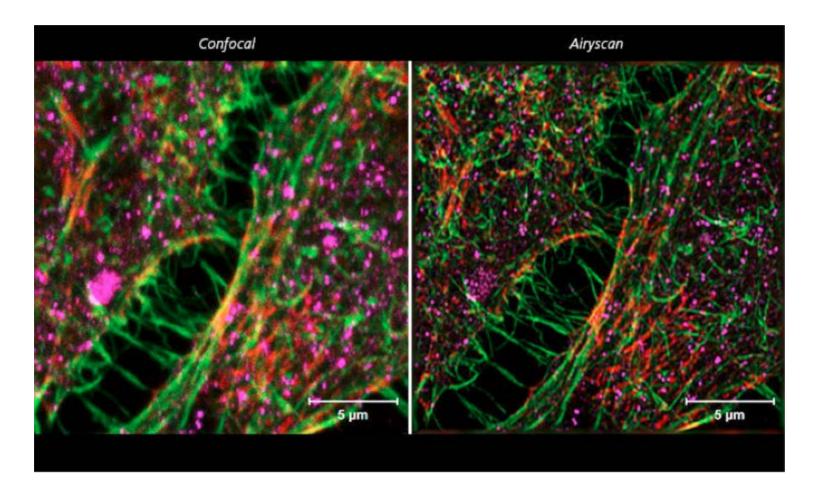
- Fixed pinhole

- Fixed spectra detection (filter set)

- Camera based detection
 - Fixed pixel size
 - Good quality images
- Very fast

http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html

Spinning disk Confocal microscope


@guijacquemet

Spinning disk Confocal microscope

Confocal airyscan (LSM 880 + airyscan)

- Coming soon to Turku / CIC
- Confocal, but much faster and higher resolution

http://bitesizebio.com/product_article/zeiss-airyscan-a-brave-new-microscopy-world-with-sharper-confocal-resolution/

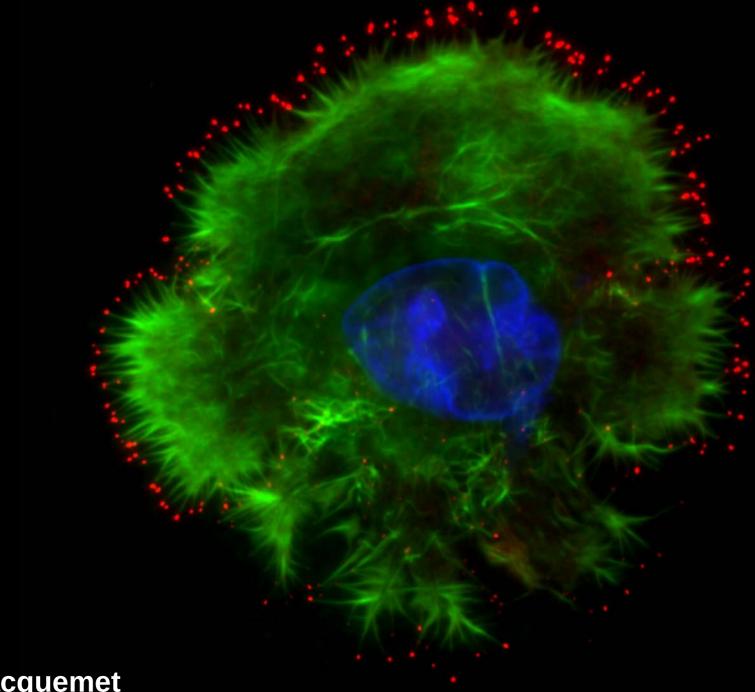
TIRF microscope

Epifluorescence TIRF Secretory cell Fluorescently-labeled vesicle Evanescent field Excitation ligh Excitation light EPI TIRF

Focal adhesion

https://www.microscopyu.com/techniques/fluorescence/total-internal-reflection-fluorescence-tirf-microscopy

- 200 nm from the glass


- Camera based detection

Great for live imaging

- Very low light

- Fast

TIRF microscope

@guijacquemet

High content microscope → Screening platform

Contact: Michael Courtney

Pathway855 (BD)

Pathway855 High-Content imager (BD)

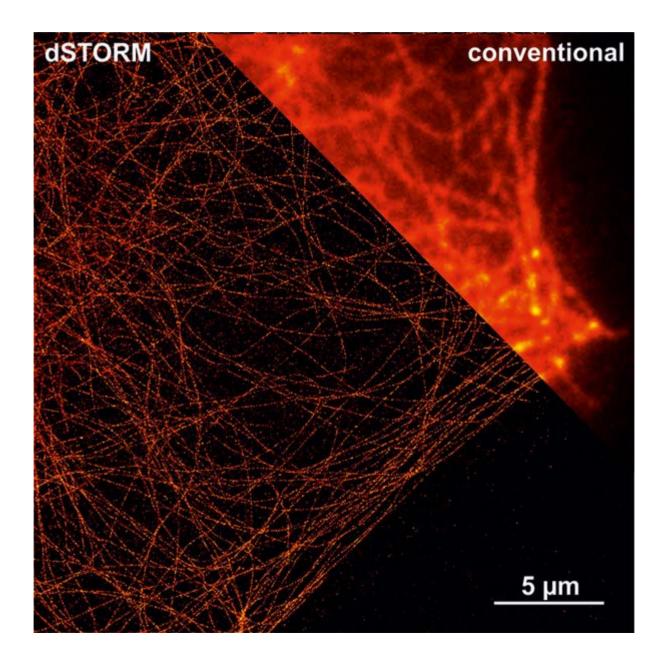
Our BD Pathway855 imager with on-stage fluidics is integrated with an automated incubator (capacity 42 plates) and ambient storage (capacity 120 plates/tip-racks). Addition items from our original systems have now arrived and these are currently (Jan/Feb 2016) being reintegrated.

The Pathway 855 imager has the following features:

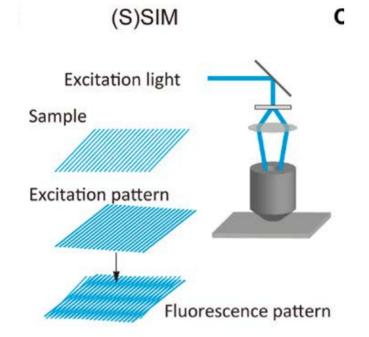
Environmentally controlled chamber with thermostatting of entire optical path

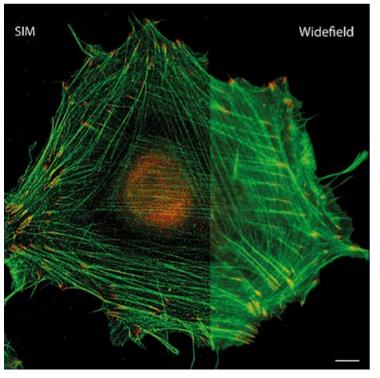
Fast 100nm resolution xy positioning of objective for correction-free montaging

Reliable fast laser focus and 50nm resolution z positioning

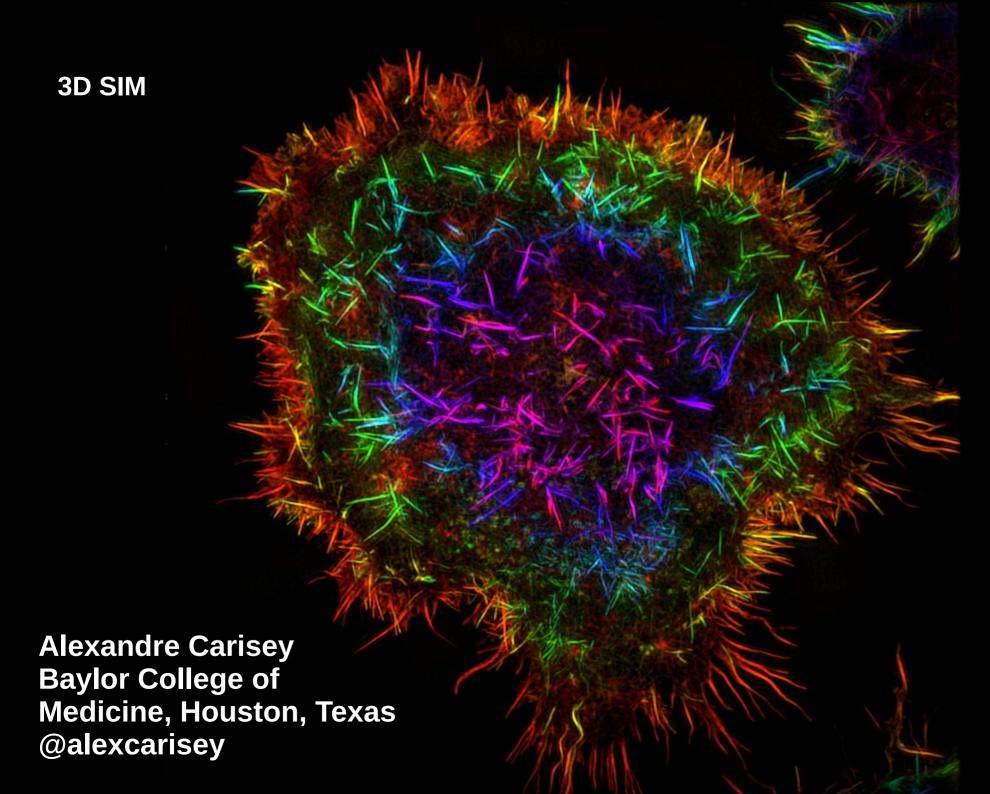

Automated reagent addition from reagent plate with mixing while imaging

Dual, continuous spectrum calibrated excitation sources

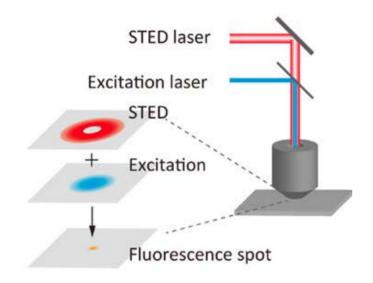

http://www.btk.fi/research/research-groups/courtney/hca-and-htm-at-the-university-of-turku/

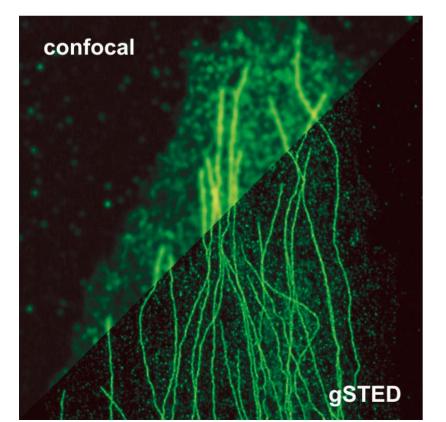


Super resolution microscopes



SIM microscope (Now available in CIC)


- Wide-field with grids
- around 100 nm resolution
- Live and Fixed samples
- any labels
- relatively fast (great for live)



SIM TIRF

Alexandre Carisey Baylor College of Medicine, Houston, Texas @alexcarisey

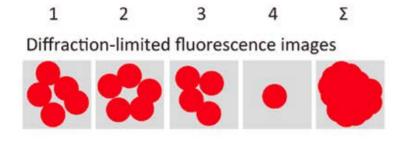
A STED microscopy

Available here in turku

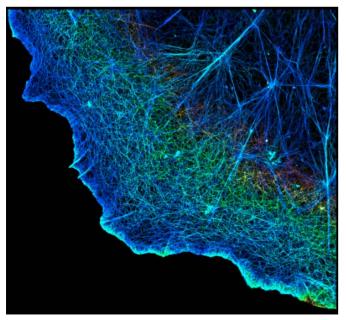
- Confocal with one extra laser
- around 50 nm resolution
- Live and Fixed samples
- Specific labels (multicolor difficult)
- Slow and high toxicity

Alexandre Carisey Baylor College of Medicine, Houston, Texas @alexcarisey

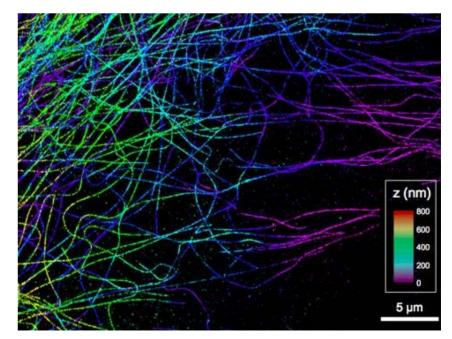
Confocal

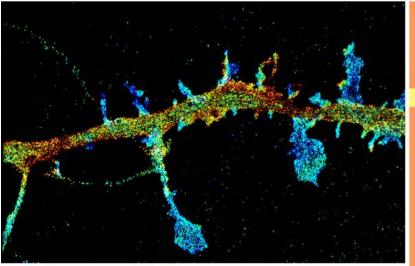

STED 2 µm

STED microscope


STORM / IPALM microscope (localization microscopy)

Localization microscopy


Localized fluorescence images


Zhuang Research Lab

- 20-30 nm resolution
- fixed samples (Live possible)
- Specific labels (blinking) and buffers
- Very very Slow

http://www.morrellonline.com/n-storm.html

Christophe Leterrier CNRS-AMU NICN, Marseille @christlet

MAKING CONTACT Christophe Leterrier, CRN2M/CNR5-AMU, Marseille

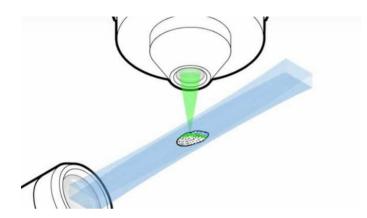

Newly forming axons and dendrites are called **neurites**. Neurites reach outwards in search of appropriate targets to form synapses, or connections with other neurons. At the tip of each neurite is a structure called a **growth cone**, which contains numerous actin filaments. The growth cone reaches out and tests different contacts until if finds the right path and connects with the right partner, Pictured is actin in a large axonal growth cone imaged with 3D STORM super-resolution microscopy, which allows to get a ten times better resolution than classical microscopy, down to 20 nanometers.

Christophe Leterrier CNRS AMU NICN, Marse IIe @christlet

Axonal Actin Hits the Trail

FAK Suppresses Hippo Signaling SNAREs Help Atlastin Light the Fuse Chromosome Dynamics During DNA Repair

NEUROGENESIS

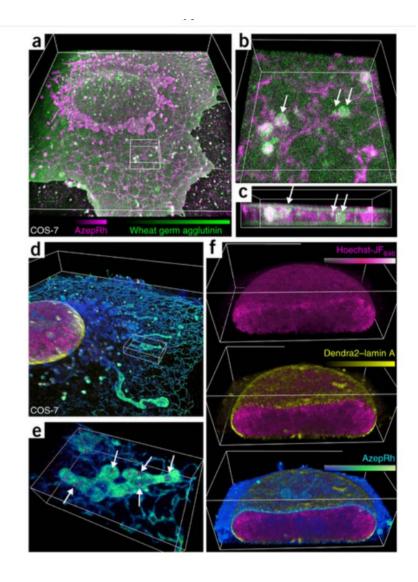

Desiree Seib, Snyder Lab, University of British Columbia

At birth, our brain contains the majority of neurons that we will have during our lifetime. However, a few brain regions maintain the ability to generate new neurons, a process called **neurogenesis**, during adulthood. The dentate gyrus, a subregion of the hippocampus retains this ability, which is thought to be important for memory formation and storage. Pictured are adult-born dentate gyrus neurons in the rat, labeled with a GFP-expressing retrovirus and pseudocolored by depth.

Interstellate Project

http://pub.lucidpress.com/Interstellate_Volume1/

The Betzig revolution I : Lattice light sheet

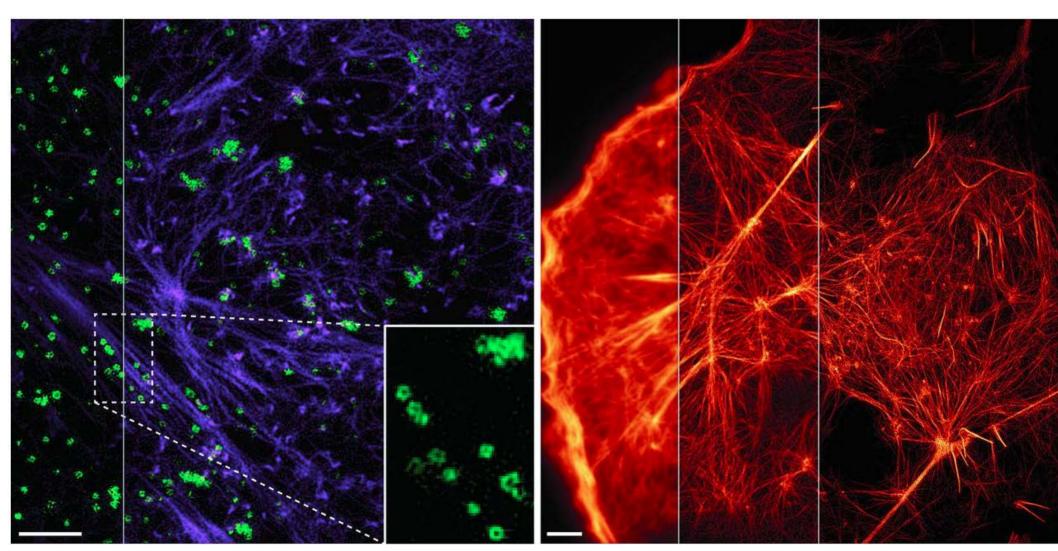


Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution

Bi-Chang Chen^{1,*,†}, Wesley R. Legant^{1,*}, Kai Wang^{1,*}, Lin Shao¹, Daniel E. Milkie², Michael W. Davidson³, Chris Janetopoulos⁴, Xufeng S. Wu⁵, John A. Hammer III⁵, Zhe Liu¹, Brian P. English¹, Yuko Mimori-Kiyosue⁶, Daniel P. Romero⁷, Alex T. Ritter^{8,9}, Jennifer Lippincott-Schwartz⁸, Lillian Fritz-Laylin¹⁰, R. Dyche Mullins¹⁰, Diana M. Mitchell^{11,‡}, Joshua N. Bembenek¹¹, Anne-Cecile Reymann^{12,13,§}, Ralph Böhme^{12,13}, Stephan W. Grill^{12,13,§}, Jennifer T. Wang¹⁴, Geraldine Seydoux¹⁴, U. Serdar Tulu¹⁵, Daniel P. Kiehart¹⁵, Eric Betzig^{1,||}

High density labeling lattice light sheet (Nature Methods 2015)

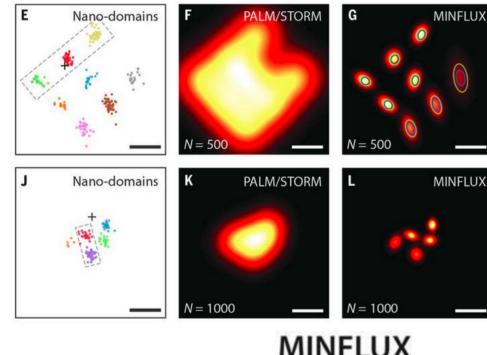
High-density three-dimensional localization microscopy across large volumes



The Betzig revolution II

High NA SIM TIRF Science 2015

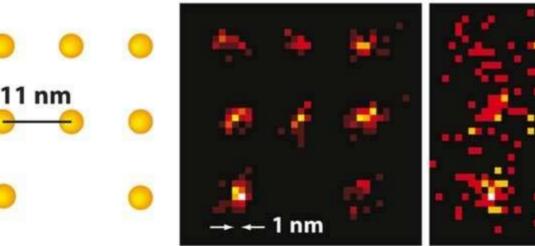
Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics


Dong Li¹, Lin Shao¹, Bi-Chang Chen^{1,*}, Xi Zhang^{2,3}, Mingshu Zhang², Brian Moses⁴, Daniel E. Milkie⁴, Jordan R. Beach⁵, John A. Hammer III⁵, Mithun Pasham⁶, Tomas Kirchhausen⁶, Michelle A. Baird^{5,7}, Michael W. Davidson⁷, Pingyong Xu², Eric Betzig^{1,†}

Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes

Science 10 Feb 2017: Vol. 355, Issue 6325, pp. 606-612 DOI: 10.1126/science.aak9913

Francisco Balzarotti^{1,*,†}, Yvan Eilers^{1,*}, Klaus C. Gwosch^{1,*}, Arvid H. Gynnå², Volker Westphal¹, Fernando D. Stefani^{3,4}. Johan Elf², Stefan W. Hell^{1,5,6,†}



- 1- 10 nm resolution

PALM/STORM

- Combination of STED and STORM

MINFLUX

Web lectures

Ibiology Microscopy courses https://www.youtube.com/watch?v=EAdEZzY0R6Y&list=PLQFc-Dxlf4pSHREZvz41xHFSEp65iNkBL

Fluorescence microscopy https://www.youtube.com/watch?v=AhzhOzgYoqw

Confocal https://www.youtube.com/watch?v=YRQsjPAx9UU

Choosing the right microscope https://www.youtube.com/watch?v=01v2kR8dlnQ

Two Photon https://www.youtube.com/watch?v=CZifB2aQDDM

Super resolution https://www.youtube.com/watch?v=w2Qo__sppcl

Betzig lecture https://www.youtube.com/watch?v=2R2ll9SRCeo

Web resources

Nikon resources https://www.microscopyu.com/

Zeiss resources http://zeiss-campus.magnet.fsu.edu/index.html

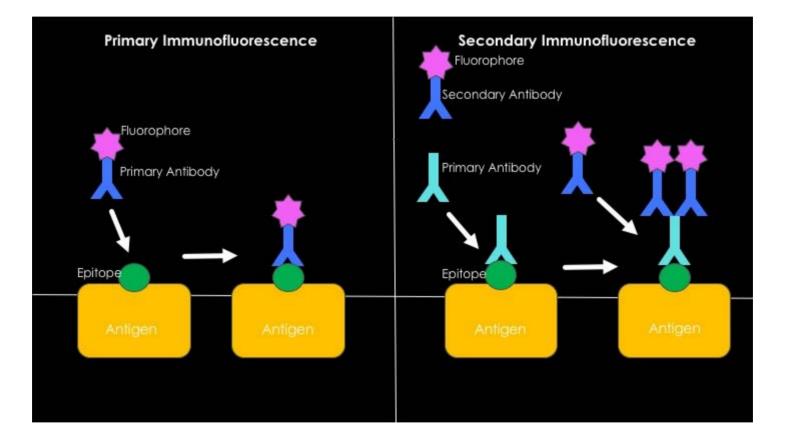
Olympus resources http://olympus.magnet.fsu.edu/index.html

Leica resources https://www.leica-microsystems.com/science-lab/ **Accessing Microscopes**

- CIC in Turku
- Collaborations

Apply to use microscope !!!!

- Eurobio-imaging network (http://www.eurobioimaging.eu/


https://www.eurobioimaging-interim.eu/locations-and-technologies.html)

- Janelia Farm visiting program (https://www.janelia.org/you-janelia/visiting-scientists)

Sample preparation (Immuno-labelling)

The basics

Sample preparation (fixed)

My advices:

- Validate your antibodies / reagents
- Do not prepare IF sample like you prepare a western blot
- Choose your fixative wisely
- Fixation will always create artefacts

Choice of fixation:

	Fixative	Effect	Advantages	Disadvantages
Chemical crosslinkers	Formaldehyde	Crosslink proteins via their free amino groups	Preserves well cellular morphology. Good for already present fluorescent proteins.	Antigens might also be crosslinked
	Glutaraldehyde		Preserves well cellular morphology. Good for already present fluorescent proteins.	Antigens might also be crosslinked High autofluorescence
Organic solvents	Methanol	Fixation by dehydrogenation and protein precipitation. Cells will simultaneously become permeabilized.	Good preservation of cellular architecture. Faster procedure in comparison to chemical crosslinkers.	Strong negative effect on many epitopes. Not suitable for fluorescent proteins. Soluble and lipid components are getting lost.
	Acetone		Less damaging to epitopes. Faster procedure	Not suitable for fluorescent proteins. Soluble and lipid components are getting lost.

Tab. 2: Fixation reagents.

- But also the concentration and timing matter !!!

Blocking or not blocking ??

- BSA, Horse serum, donkey serum, gelatin?

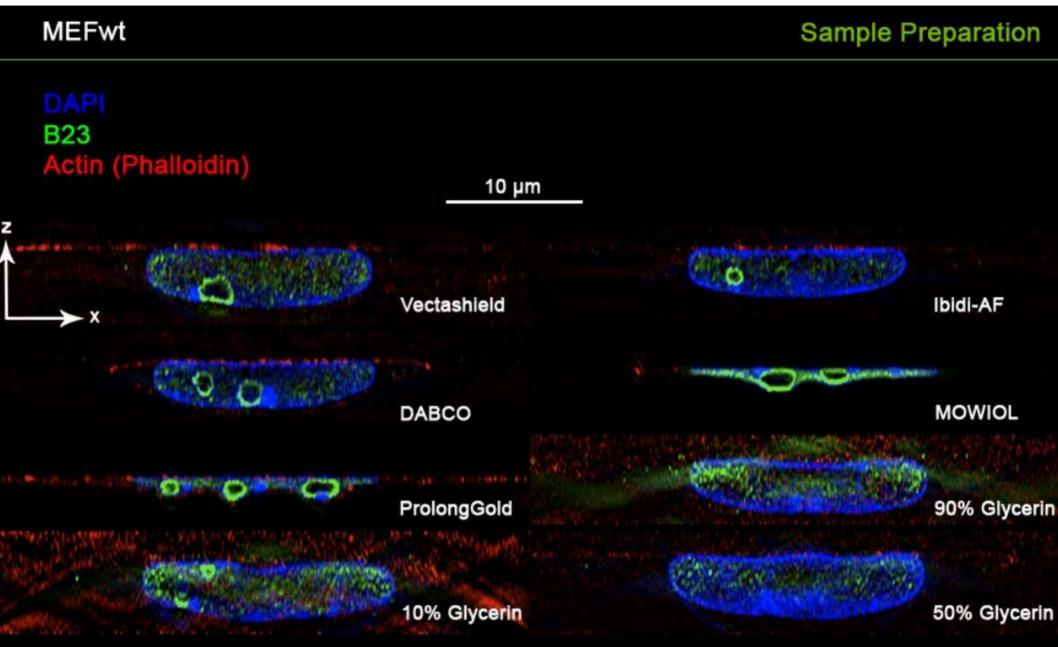
- If your antibody is good, blocking is useless and may increase background

Article | OPEN

- Try without blocking first

Non-specific binding of antibodies in immunohistochemistry: fallacies and facts

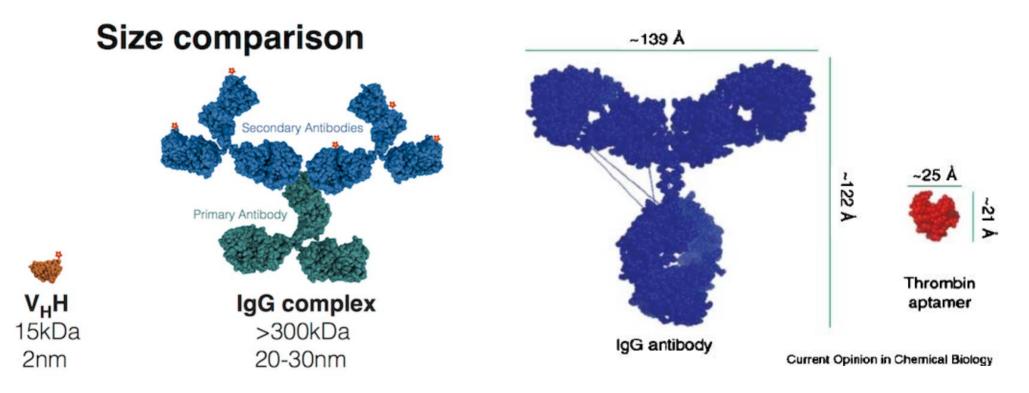
Igor Buchwalow 🏁, Vera Samoilova, Werner Boecker & Markus Tiemann


Scientific Reports 1, Article number: 28 (2011) doi:10.1038/srep00028 Download Citation Biological techniques Imaging Medical research

Received: 13 April 2011 Accepted: 16 June 2011 Published online: 01 July 2011

Classical immunofluorescence protocol

- Fixation with 4 % PFA for 10 min
- Permeabilization with 0.5% triton (PBS) for 3 min
- Blocking with 1M glycin for 1h
- Primary antibody for 25 min
- 3 PBS washes
- Secondary antibody for 25 min
- 3 PBS washes
- Image / or mount.
- Best to dry samples O/N at 4C before mounting


The choice of mounting media (z resolution) : Credit : A. Maiser. LMU. DE (via @patrina_pellett)

Replacing antibodies: Nanobodies, fab fragments and Aptamers

- Antibodies are very large

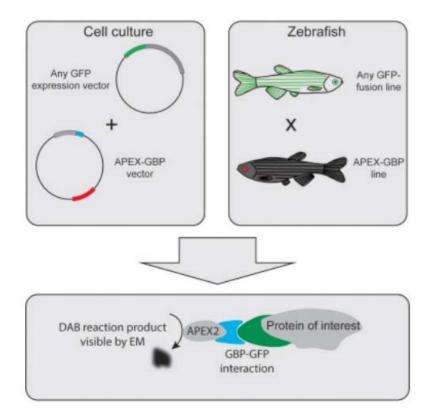
STED resolution around 40 – 50 nm STORM resolution around 20 – 30 nm

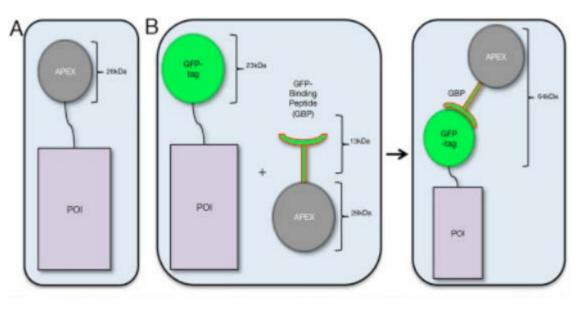
http://www.chromotek.com/about-us/the-alpaca-antibody-advantage/

Very rapid and easy detection of GFP proteins using EM

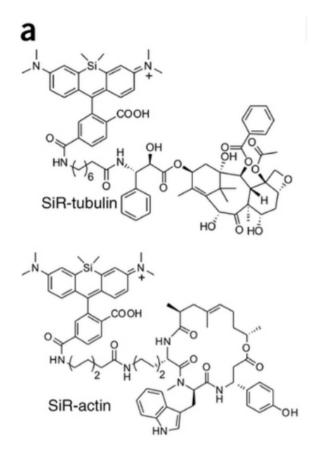
GBP-APEX

GBP = anti GFP nanobody

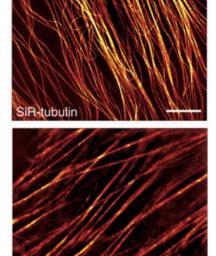

APEX = Peroxydase


Resource

Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms


Nicholas Ariotti^{1, 3}, Thomas E. Hall^{1, 3}, James Rae¹, Charles Ferguson¹, Kerrie-Ann McMahon¹, Nick Martel¹, Robyn E. Webb², Richard I. Webb², Rohan D. Teasdale¹, Robert G. Parton^{1, 2}, ^A, ^A ¹ Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia ² Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia

Received 14 May 2015, Revised 16 September 2015, Accepted 19 October 2015, Available online 12 November 2015



Chemicals to label cellular structures

SiR-Actin Kit
SiR-DNA Kit
SiR-Lysosome Kit
SiR-Tubulin Kit
SiR700-Actin Kit
SiR700-DNA Kit
SiR700-Lysosome Kit
SiR700-Tubulin Kit

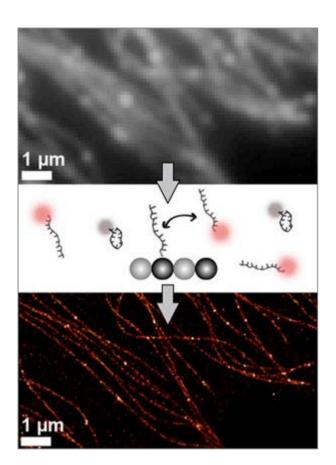
Cytoskeleton Kit (SiR-Actin and SiR-Tubulin)

SiR-actin

SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy

Gražvydas Lukinavičius, Claudia Blaukopf, Elias Pershagen, Alberto Schena, Luc Reymond, Emmanuel Derivery, Marcos Gonzalez-Gaitan, Elisa D'Este, Stefan W. Hell, Daniel Wolfram Gerlich 🏁 & Kai Johnsson 🏁

Fluorogenic Probes for Multicolor Imaging in Living Cells


Gražvydas Lukinavičius^{*†§}, Luc Reymond^{*†}, Keitaro Umezawa[‡], Olivier Sallin[†], Elisa D'Este[§], Fabian Göttfert[§], Haisen Ta[§], Stefan W. Heli[§], Yasuteru Urano[‡], and Kai Johnsson^{*†}

http://www.cytoskeleton.com/live-cell-reagents/spirochrome

Fluorogenic probes for live-cell imaging of the cytoskeleton

Gražvydas Lukinavičius, Luc Reymond, Elisa D'Este, Anastasiya Masharina, Fabian Göttfert, Haisen Ta, Angelika Güther, Mathias Fournier, Stefano Rizzo, Herbert Waldmann, Claudia Blaukopf, Christoph Sommer, Daniel W Gerlich, Hans-Dieter Arndt, Stefan W Hell & Kai Johnsson

The future: DNA- PAINT and exchange-Paint

Antibody (or protein) couple with DNA strand Complementary DNA strand coupled with fluorophore

- Very High density

- Never bleach (almost) due to binding unbinding rate Of the DNA

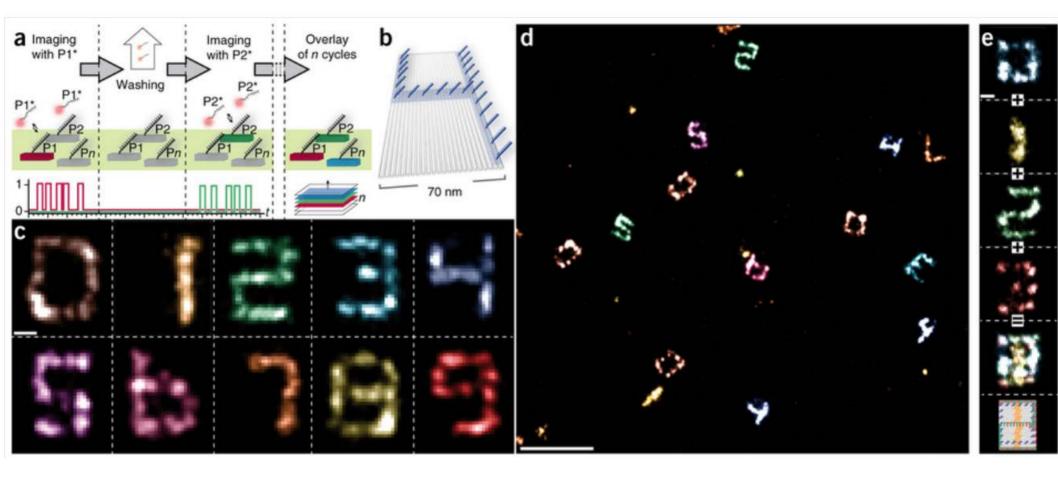
- Exchange Paint

Multiplexed 3D cellular super-resolution imaging ²⁰¹⁴ with DNA-PAINT and Exchange-PAINT

Ralf Jungmann, Maier S Avendaño, Johannes B Woehrstein, Mingjie Dai, William M Shih & Peng Yin


DNA Paint application: high fluorophore density

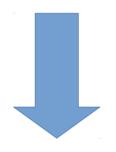
DNA paint + lattice light sheet = Awesome


(and also a science paper)

High-density three-dimensional localization microscopy across large volumes

Wesley R Legant, Lin Shao, Jonathan B Grimm, Timothy A Brown, Daniel E Milkie, Brian B Avants, Luke D Lavis & Eric Betzig

The future: DNA PAINT and exchange-Paint

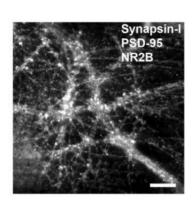


Multiplexed 3D cellular super-resolution imaging ²⁰¹⁴ with DNA-PAINT and Exchange-PAINT

Ralf Jungmann, Maier S Avendaño, Johannes B Woehrstein, Mingjie Dai, William M Shih & Peng Yin

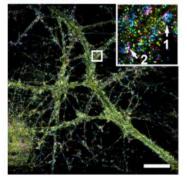
Why is it the future ?

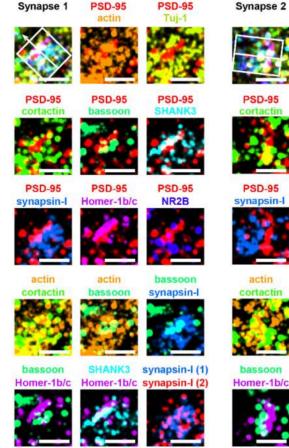
Imagine a world where all your primary antibodies are DNA labeled !

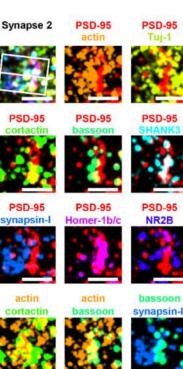


- Unlimited number of target can be imaged sequentially on the same sample

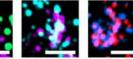
DNA Paint application: multi color imaging

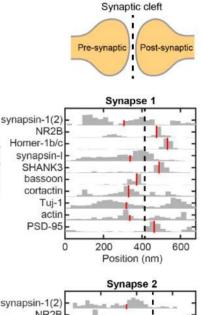

b

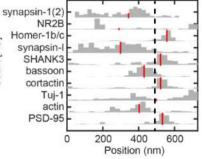

13 color imaging using exchange PAINT



а


PSD-95 actin Tuj-1 cortactin bassoon SHANK3 synapsin-I Homer-1b/c NR2B



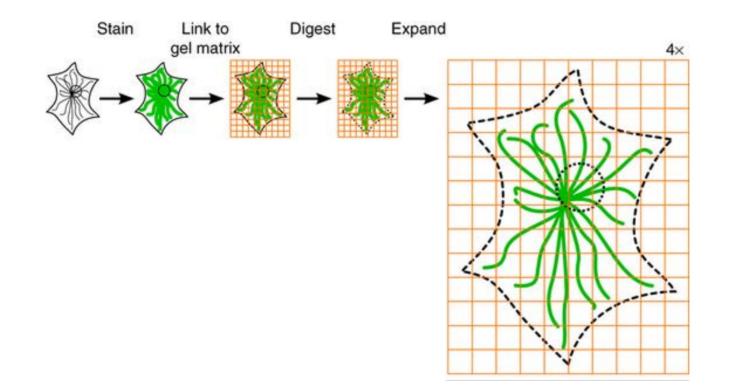


Count [AU]

Count [AU]

Multiplexed confocal and super-resolution fluorescence imaging of cytoskeletal and neuronal synapse proteins

Syuan-Ming Guo, Remi Veneziano, Simon Gordonov, Li Li, Demian Park, Anthony B Kulesa, Paul C Blainey, Jeffrey R Cottrell, Edward S Boyden, Mark Bathe **doi:** https://doi.org/10.1101/111625

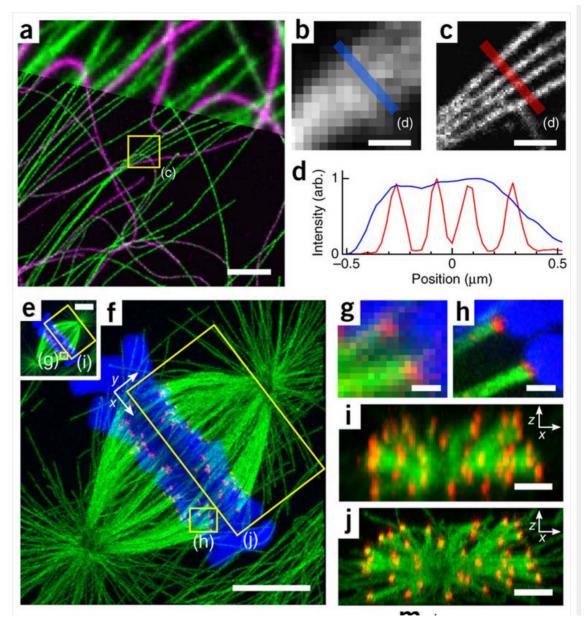

@eboyden3

Expansion microscopy - Principle

Expansion microscopy

Fei Chen^{1,*}, Paul W. Tillberg^{2,*}, Edward S. Boyden^{1,3,4,5,6,†} + See all authors and affiliations

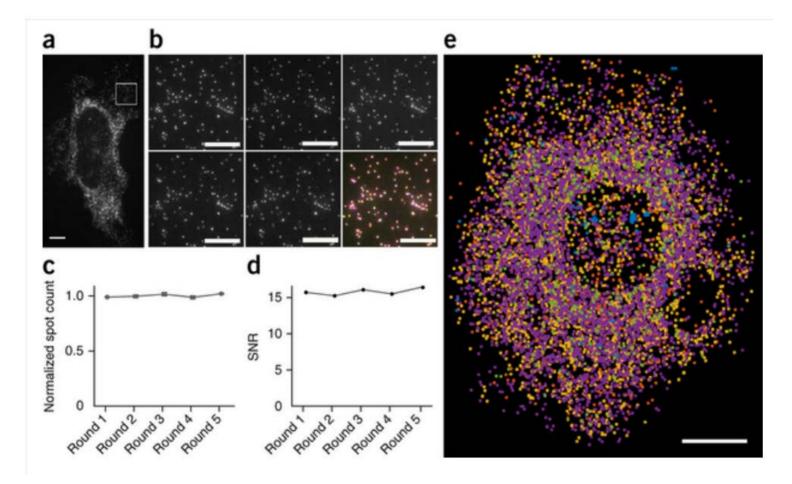
Science 30 Jan 2015: Vol. 347, Issue 6221, pp. 543-548 DOI: 10.1126/science.1260088



- Make the sample bigger (4.5x) !!

@eboyden3

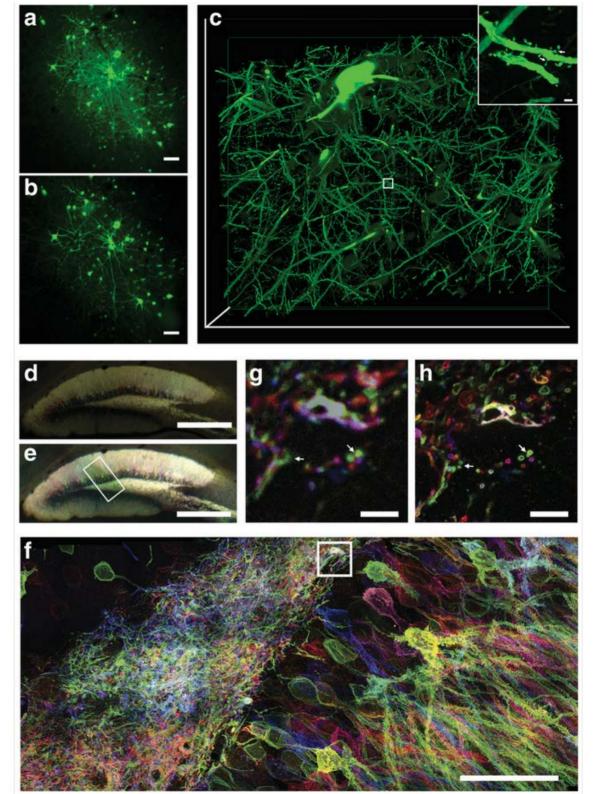
Works - with cells


Resolution (~ 80 nm) Using normal confocal

Expansion microscopy with conventional antibodies and fluorescent proteins

Tyler J Chozinski, Aaron R Halpern, Haruhisa Okawa, Hyeon-Jin Kim, Grant J Tremel, Rachel O L Wong & Joshua C Vaughan Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies

Paul W Tillberg, Fei Chen, Kiryl D Piatkevich, Yongxin Zhao, Chih-Chieh (Jay) Yu, Brian P English, Linyi Gao, Anthony Martorell, Ho-Jun Suk, Fumiaki Yoshida, Ellen M DeGennaro, Douglas H Roossien, Guanyu Gong, Uthpala Seneviratne, Steven R Tannenbaum, Robert Desimone, Dawen Cai & Edward S Boyden **Expansion microscopy – RNA**



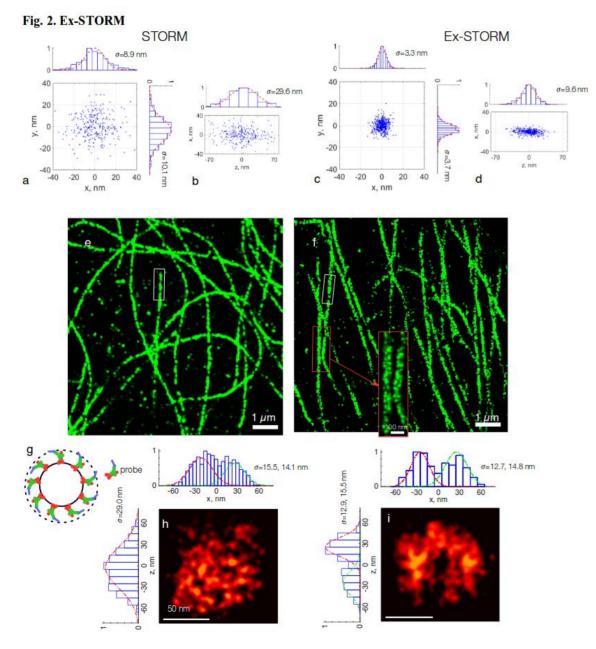
Nanoscale imaging of RNA with expansion microscopy

Fei Chen, Asmamaw T Wassie, Allison J Cote, Anubhav Sinha, Shahar Alon, Shoh Asano, Evan R Daugharthy, Jae-Byum Chang, Adam Marblestone, George M Church, Arjun Raj & Edward S Boyden

Expansion microscopy ExM

Works - with tissue sections (Fresh and Paraffin)

Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies


Paul W Tillberg, Fei Chen, Kiryl D Piatkevich, Yongxin Zhao, Chih-Chieh (Jay) Yu, Brian P English, Linyi Gao, Anthony Martorell, Ho-Jun Suk, Fumiaki Yoshida, Ellen M DeGennaro, Douglas H Roossien, Guanyu Gong, Uthpala Seneviratne, Steven R Tannenbaum, Robert Desimone, Dawen Cai & Edward S Boyden

Works with Super-RES scopes

ExM-STORM: Expansion Single Molecule Nanoscopy

Hu Cang, Zhisong Tong, Paolo Beuzer, Qing Ye, Josh Axelrod, Zhenmin Hong **doi:** https://doi.org/10.1101/049403

This article is a preprint and has not been peer-reviewed [what does this mean?].

Resources on Expansion microscopy:

- Listen to Ed Boyden: https://www.youtube.com/watch?v=NeIhXVEITHM

https://www.youtube.com/watch?v=-o9-X8TvgFo&t=105s

https://www.youtube.com/watch?v=iINwzTIU770

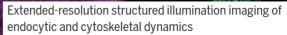
- Visit: Protocols, Papers, advices

http://expansionmicroscopy.org/

- ProExM video protocol https://www.youtube.com/watch?v=OksNCAJwxVI

- Commercial company selling products

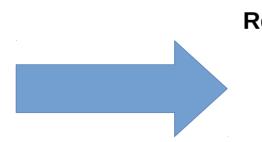
http://www.extbio.com/


- Visit Ed Lab

Live cell imaging and fluorescent proteins !

Watch Betzig Videos here:

https://vimeo.com/user33367262


Dong Li¹, Lin Shao¹, Bi-Chang Chen^{1,*}, Xi Zhang^{2,3}, Mingshu Zhang², Brian Moses⁴, Daniel E, Milkie⁴, Jordan R. Beach², John A. Hammer III⁰, Mithun Pasham⁰, Tomas Kirchhausen⁶, Michelle A. Baird^{2,3}, Michael W. Davidson⁷, Pingyong Xu², Eric Betzig^{1,4}

Live cell imaging, getting started

- Ask for help
- Use the right media
- optimize your right imaging condition
- Choose the right Fluorescent proteins

Remember the observer effect:

Observer effect refers to changes that the act of observation will make on a phenomenon being observed

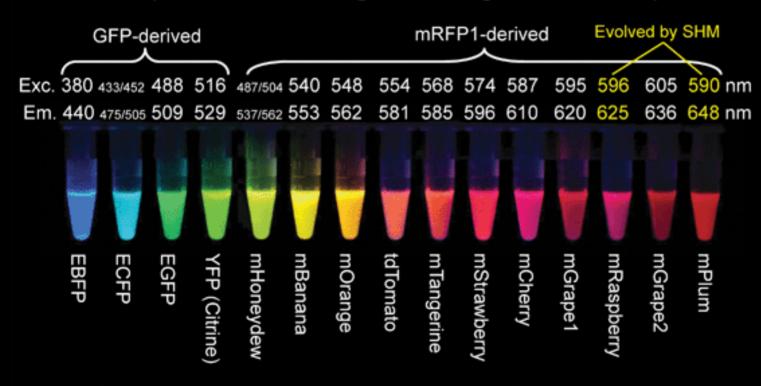
- Try normal media + Hepes !! (CO2 independent)

Too much autofluorescence \longrightarrow - Try imaging media (ie: molecular probe)

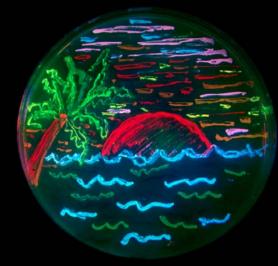
Phototoxicity problems - Try anti- Fade media (ie ProLong Antifade Reagents for Live Cells)

For Single molecule tracking:

UV pre-bleaching media for single-molecule imaging (@mrpaulreynolds)


Anti-Fading Media for Live Cell GFP Imaging

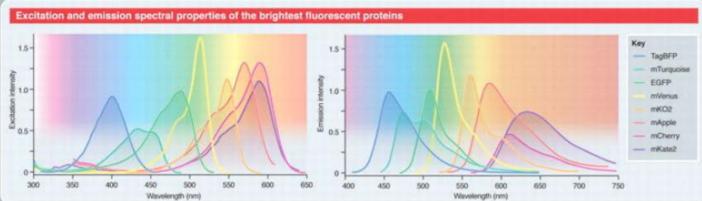
Alexey M. Bogdanov, Elena I. Kudryavtseva, Konstantin A. Lukyanov 🖂


Published: December 21, 2012 • http://dx.doi.org/10.1371/journal.pone.0053004

The wonderful world of FPs

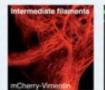
The 2004 palette of nonoligomerizing fluorescent proteins

Nathan Shaner et al (2004) Nature Biotech. 22: 1567-1572 Lei Wang et al (2004) Proc. Natl. Acad. Sci. USA 101: 16745-16749



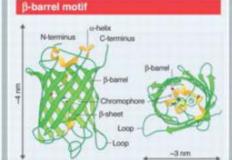
Fluorescent Proteins at a Glance

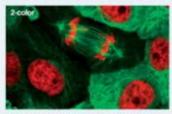
Gert-Jan Kremers, Sarah G. Gilbert, Paula J. Cranfill, Michael W. Davidson and David W. Piston

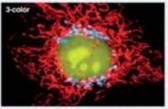

Fluorescent protein localization

KO2-CAAX

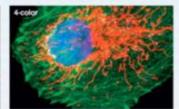
Microtubules

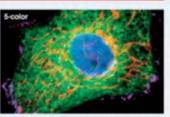

Cherny-a-lubulin


Protein (acronym)	Excitation maximum (nm)	Emission maximum (nm)	Extinction coefficient ×10 ⁻³ (M ⁻¹ cm ⁻¹)	Quantum yield	Relative brightness (% of EGFP)
mTagBFP	399	456	52.0	0.63	98
mTurquoise	434	474	30.0	0.84	75
mEGFP	488	507	56.0	0.60	100
mVenus	515	528	92.2	0.57	156
mKO2	551	565	63.8	0.62	118
тАрряе	568	592	75.0	0.49	109
mCherry	587	610	72.0	0.22	47
miKate2	588	633	62.5	0.40	74


	Critic	Critical mu	
a-heix	Mutation	Prope	
C-terminus	S30R	Increa	
51	F64L	Accele	
p-barrel	Q69M	improv photos	
Chromophore	\$72A	Faster	
Baheet	S147P	Faster	
Loop -	N149K	Faster	
-Loop	V163A	Reduc	
-3 nm	1167T	Reduc	

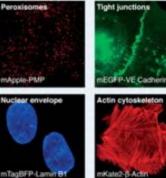
Critica	al mutations
Mutation	Properties
530R	Increases folding rate, enhances protein stability
FEAL	Accelerates chromophore tormation
269M	Improves chloride and pH resistance, photostability and folding
\$72A	Faster folding rate, stabilizes protein
\$147P	Faster maturation rate, located near chromophore
V149K	Faster folding rate, stabilizes protein
A6015	Reduces hydrophobicity, no effect on folding rate
167T	Reduced thermosensitivity, faster maturation rate




LLC-PK1 (pig kidney) cells expressing mEGFP fused to a-tubulin (green) and mApple fused to histone H2B (red)

HeLa (human carcinoma) cells expressing mTurquoise fused to a Golgi-targeting peptide (cyan), mVenus fused to a nuclear targeting signal (yellow), and mCherry fused to a mitochondriontargeting peptide (red)

RK-13 (rabbit kidney) cells expressing mTagBFP fused to histone H2B (blue), mTurquoise fused to peroxisomal membrane protein (cyan), mEGFP fused to Lifeact (actin; green), and mCherry fused to pyruvate dehydrogenase (mitochondria; red)


HeLa cells expressing mTagBFP fused to histone H2B (blue), mTurquoise fused to peroxisomal membrane protein (cyan), mEGFP tused to calreticulin (ER; green), mKO2 fused to zyxin (focal adhesions; purple), and mKate2 fused to pyruvate dehydrogenase (mitochondria; red)

isma membrane

nKate2-LAMP1

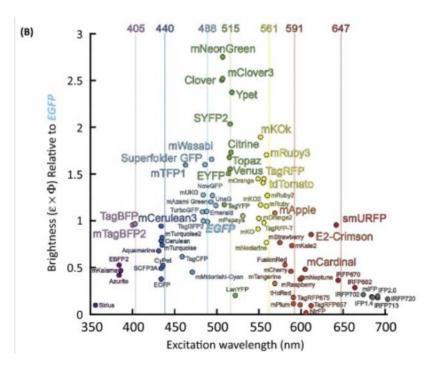
vsosomes

Clathrin vesicles

KO2-LC-

Trends in Biochemical Sciences

Volume 42, Issue 2, February 2017, Pages 111–129


Feature Review

The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins

http://dx.doi.org/10.1016/j.tibs.2016.09.010

Get rights and content

http://www.sciencedirect.com/science/article/pii/S0968000416301736

Quantitative assessment of fluorescent proteins

Paula J Cranfill, Brittney R Sell, Michelle A Baird, John R Allen, Zeno Lavagnino, H Martijn de Gruiter, Gert-Jan Kremers, Michael W Davidson, Alessandro Ustione & David W Piston Affiliations | Contributions | Corresponding author

Nature Methods **13**, 557–562 (2016) | doi:10.1038/nmeth.3891 Received 18 March 2016 | Accepted 07 May 2016 | Published online 30 May 2016

doi:10.1038/nmeth.3891

How to choose your Fps (More than 400 available across the spectra)

- Excitation & Emission (ex/em) — \rightarrow Color

- Oligomerization Use monomeric proteins !!!!

- Oxygen

Maturation Time (superfolder GFP (sfGFP) and mNeonGFP can fold in <10min at 37°C, mCherry takes ~15min, TagRFP ~100min and DsRed ~10hours)

- Temperature
- Brightness
- Photostability
- pH Stability

More info here: http://blog.addgene.org/which-fluorescent-protein-should-i-use

Spectra viewer : http://www.fpvis.org/

@scopekurt

What you most likely use:

- GFP: 1994
- EGFP: 1996
- emeraldGFP: 1999
- mCherry : 2004
- EYFP: 1997
- ECFP: 1997

We are in 2017...

The Blues

- mTurquoise2 (2012)

@joachimgoedhart

Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%

Joachim Goedhart, David von Stetten, Marjolaine Noirclerc-Savoye, Mickaël Lelimousin, Linda Joosen, Mark A. Hink, Laura van Weeren, Theodorus W.J. Gadella Jr [™] & Antoine Royant [™]

Nature Communications **3**, Article number: 751 (2012) <u>doi:10.1038/ncomms1738</u> Download Citation Received: 14 October 2011 Accepted: 08 February 2012 Published online: 20 March 2012

- mCerulean3 (2011)

RESEARCH ARTICLE

An Improved Cerulean Fluorescent Protein with Enhanced Brightness and Reduced Reversible Photoswitching

Michele L. Markwardt, Gert-Jan Kremers, Catherine A. Kraft, Krishanu Ray, Paula J. C. Cranfill, Korey A. Wilson, Richard N. Day, Rebekka M. Wachter, Michael W. Davidson, Mark A. Rizzo

Published: March 29, 2011 • http://dx.doi.org/10.1371/journal.pone.0017896

The Greens

- mNeonGreen (2013)

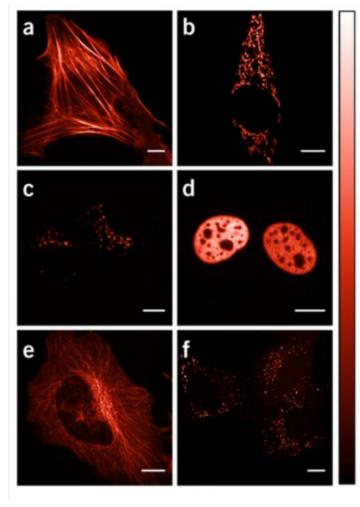
@NathanShaner

A bright monomeric green fluorescent protein derived from *Branchiostoma lanceolatum*

Nathan C Shaner, Gerard G Lambert, Andrew Chammas, Yuhui Ni, Paula J Cranfill, Michelle A Baird, Brittney R Sell, John R Allen, Richard N Day, Maria Israelsson, Michael W Davidson & Jiwu Wang

Affiliations | Contributions | Corresponding author

Nature Methods **10**, 407–409 (2013) | doi:10.1038/nmeth.2413 Received 25 July 2012 | Accepted 19 February 2013 | Published online 24 March 2013


- mClover3 (2016)

Article OPEN

Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

Bryce T. Bajar, Emily S. Wang, Amy J. Lam, Bongjae B. Kim, Conor L. Jacobs, Elizabeth S. Howe, Michael W. Davidson, Michael Z. Lin [™] & Jun Chu [™]

The Reds : mScarlet

2016

mScarlet: a bright monomeric red fluorescent protein for cellular imaging

Daphne S Bindels, Lindsay Haarbosch, Laura van Weeren, Marten Postma, Katrin E Wiese, Marieke Mastop, Sylvain Aumonier, Guillaume Gotthard, Antoine Royant, Mark A Hink & Theodorus W J Gadella Jr

Nature Methods 14, 53–56 (2017) | doi:10.1038/nmeth.4074 Received 29 July 2016 | Accepted 20 October 2016 | Published online 21 November 2016 | Corrected online 12 December 2016

The Far REDs

-mIRFP670 (2016) : no biliverdin required

Article | OPEN

Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging

Daria M. Shcherbakova, Mikhail Baloban, Alexander V. Emelyanov, Michael Brenowitz, Peng Guo & Vladislav V. Verkhusha ™

Nature Communications 7, Article number: 12405 (2016) doi:10.1038/ncomms12405 Received: 27 December 2015 Accepted: 29 June 2016 Published online: 19 August 2016

-smURF (2016): very bright in presence of biliverdin (same as EGFP)

@erin_rod_phd

A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein

Erik A Rodriguez, Geraldine N Tran, Larry A Gross, Jessica L Crisp, Xiaokun Shu, John Y Lin & Roger Y Tsien

Nature Methods **13**, 763–769 (2016) | doi:10.1038/nmeth.3935 Received 07 December 2015 | Accepted 01 July 2016 | Published online 01 August 2016 | Corrected online **16 September 2016** Corrigendum (October, 2016)

The one for super resolution (switchable)

Skylan (2015)

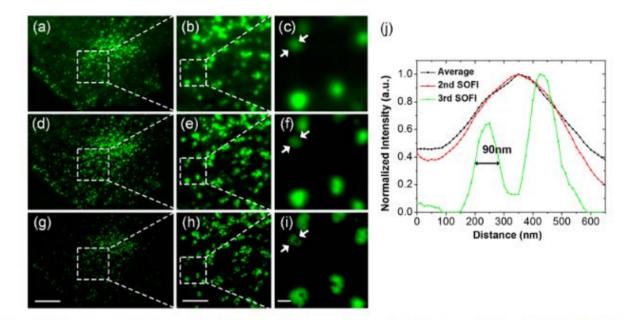


Figure 5. SOFI images of clathrin-coated pits (CCPs) in live U2OS cells. (a-c) TIRFM images of CCPs of living U2OS cells fused with Skylan-S under its optimal condition. (d-f) Second-order SOFI images. (g-i) Third-order SOFI images. (b,e,h) Zoomed-in views of the boxed regions in panels a, d, and g, respectively. (j) Intensity profiles of cross sections taken along the white arrows indicated in panels c, f, and i. The scale bars represent (a,d,g) 10 µm, (b,e,h) 3 µm, and (c,f,i) 500 nm.

Development of a Reversibly Switchable Fluorescent Protein for Super-Resolution Optical Fluctuation Imaging (SOFI)

Xi Zhang^{†‡}, Xuanze Chen^{§||}, Zhiping Zeng[§], Mingshu Zhang[‡], Yujie Sun^{||}, Peng Xi^{*§}, Jianxin Peng^{*†}, and Pingyong Xu^{*‡}

[†] Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China

 [‡] Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
[§] Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
I State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China

ACS Nano, 2015, 9 (3), pp 2659–2667 DOI: 10.1021/nn5064387 Publication Date (Web): February 19, 2015 Copyright © 2015 American Chemical Society

The FRET Pairs

Blue - Yellow

- mTurquoise2 - mCitrine

Green- Red

MClover3 - mRuby3

Article | OPEN

Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

Bryce T. Bajar, Emily S. Wang, Amy J. Lam, Bongjae B. Kim, Conor L. Jacobs, Elizabeth S. Howe, Michael W. Davidson, Michael Z. Lin [™] & Jun Chu [™]

Red- Far Red

More info: www.mdpi.com/1424-8220/16/9/1488/pdf

The FP that resist to the cellular environment (PH / Oxidation)

Article

A palette of fluorescent proteins optimized for diverse cellular environments

Lindsey M. Costantini, Mikhail Baloban, Michele L. Markwardt, Mark Rizzo, Feng Guo, Vladislav V. Verkhusha & Erik L. Snapp 🔀

Nature Communications 6, Article number: 7670 (2015)doi:10.1038/ncomms8670 **Download Citation**

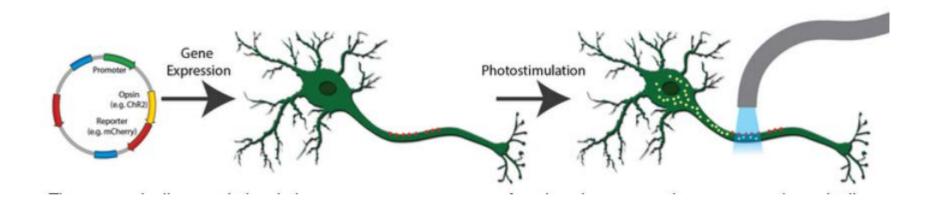
Received: 09 October 2014 Accepted: 28 May 2015 Published online: 09 July 2015

Fluorescent proteins Organelles

Article | OPEN

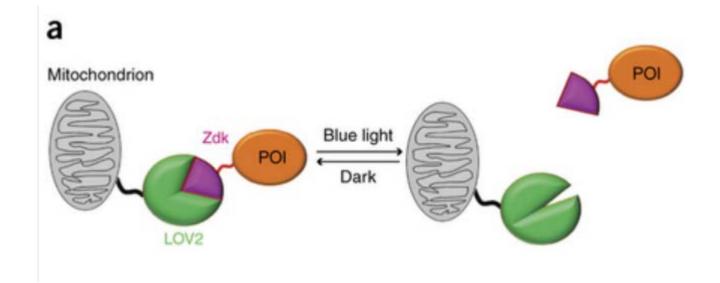
Identification and Characterisation of a pH-stable GFP

Tania Michelle Roberts, Fabian Rudolf[™], Andreas Meyer, Rene Pellaux, Ellis Whitehead, Sven Panke & Martin Held 🖂


Scientific Reports 6, Article number: 28166 (2016)doi:10.1038/srep28166 **Download Citation**

Received: 10 February 2016 Accepted: 01 June 2016 Published online: 21 June 2016

Fluorescent proteins Protein design


Optogenetics

Controlling cellular behavior with light

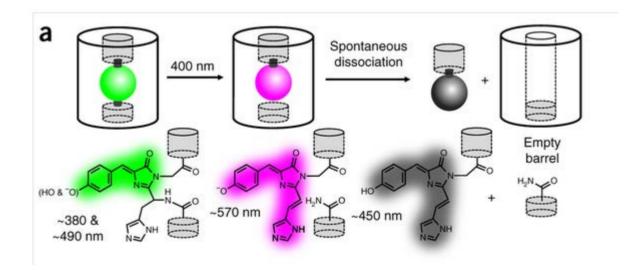
https://www.addgene.org/optogenetics/

The TRAPs (LOVTRAP)

LOVTRAP: an optogenetic system for photoinduced protein dissociation

Hui Wang, Marco Vilela, Andreas Winkler, Miroslaw Tarnawski, Ilme Schlichting, Hayretin Yumerefendi, Brian Kuhlman, Rihe Liu, Gaudenz Danuser & Klaus M Hahn

Affiliations | Contributions | Corresponding authors


Nature Methods **13**, 755–758 (2016) | doi:10.1038/nmeth.3926 Received 21 November 2015 | Accepted 16 June 2016 | Published online 18 July 2016

Optogenetic control with a photocleavable protein, PhoCl

Wei Zhang, Alexander W Lohman, Yevgeniya Zhuravlova, Xiaocen Lu, Matthew D Wiens, Hiofan Hoi, Sine Yaganoglu, Manuel A Mohr, Elena N Kitova, John S Klassen, Periklis Pantazis, Roger J Thompson & Robert E Campbell

Affiliations | Contributions | Corresponding author

Nature Methods (2017) | doi:10.1038/nmeth.4222 Received 23 September 2016 | Accepted 14 February 2017 | Published online 13 March 2017

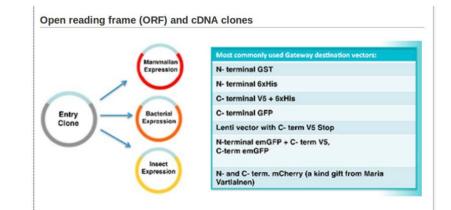
And everything else...

	FRET	Find FRET pairs and standards to study protein-protein interactions or conformational changes within a protein.
-	Biosensors	Monitor small biomolecules or other physiological intracellular processes with genetically encoded fluorescent biosensors.
	Optogenetics	Use light to detect, measure, and control molecular signals, cells, or groups of cells with either actuators or sensors.
	Chemogenetics	Use small molecules to activate genetically engineered cellular receptors that affect signalling pathways within cells.
	Subcellular Localization	Determine where your protein of interest resides by using a well-characterized fluorescent fusion protein.
e	<u>In Vivo Imaging</u>	Image with these powerful tools to study individual plasmids or protein- protein interactions in organs and whole mammals.
	Regulate Biological Activity	Use fluorescent proteins to modulate biological activity, like transcription.

https://www.addgene.org/fluorescent-proteins/

Getting fluorescent proteins

- Ask


- Addgene (https://www.addgene.org/)

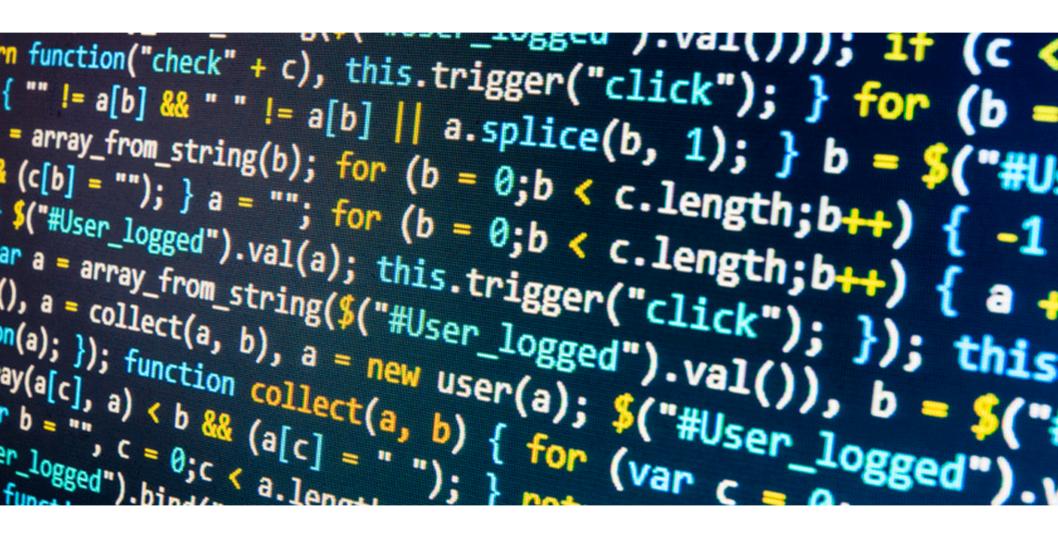
- Michael Davidson Fluorescent Protein Collection (over 3000 tagged proteins)

https://www.addgene.org/fluorescent-proteins/davidson/

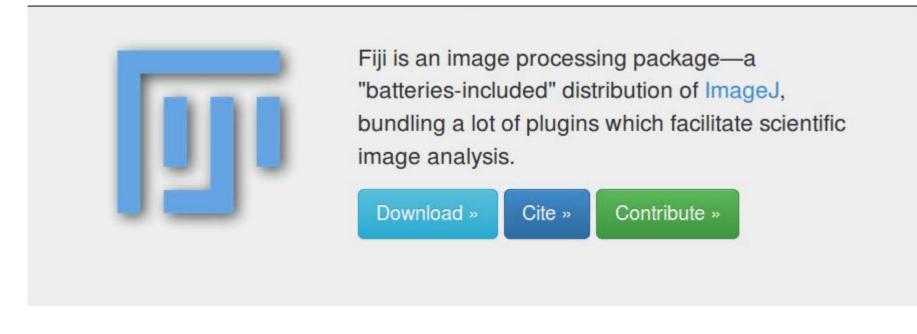
- **GBU unit in Helsinki**: Large ORF library accessible to research done in Finland

- http://www.biocenter.helsinki.fi/bi/gbu/
- Gateway entry clones
- Cloning services (20 euro)

Allen Cell Collection: Human stem cells where the endogenous proteins are GFP tagged


http://www.allencell.org/cell-line-catalog

Allen Cell Collection available at Coriell


Cell Line ID	Protein	Gene name
AICS-0005	Paxillin	Paxillin (PXN)
AICS-0011	TOM20	Translocase of outer mitochondrial membrane 20 (TOMM20)
AICS-0012	Alpha-tubulin	Tubulin-alpha 1b (TUBA1B)
AICS-0013	LaminB1	Lamin B1 (LMNB1)
AICS-0017	Desmoplakin	Desmoplakin (DSP)

List of Cell Lines in Progress

Cell Line ID	Protein	Gene name	Structure	Tag Location	Fluorophore	Parental Line	Status
AICS-0010	Sec61-beta	Sec61 translocon beta subunit (SEC61B)	Endoplasmic reticulum	N-terminus	mEGFP	WTC	Final QC
AICS-0014	Fibrillarin	Fibrillarin (FBL)	Nucleolus	C-terminus	mEGFP	WTC	Final QC
AICS-0016	Beta-actin	Actin beta (ACTB)	Actin	N-terminus	mEGFP	WTC	Final QC
AICS-0020	Vimentin	Vimentin (VIM)	Intermediate filaments	N-terminus	mEGFP	WTC	Screening & QC
AICS-0022	LAMP1	lysosomal associated membrane protein 1 (LAMP1)	Lysosome	C-terminus	mEGFP	WTC	Design phase
AICS-0023	Tight junction protein ZO-1	Tight junction protein 1 (TJP1)	Tight junctions	N-terminus	mEGFP	WTC	Screening & QC
AICS-0024	Myosin IIB	Myosin heavy chain 10 (MYH10)	Myosin	N-terminus	mEGFP	WTC	Screening & QC
AICS-0025	beta-galactoside alpha-2,6-sialyltransferase 1	ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1)	Golgi	C-terminus	mEGFP	WTC	Pre-clonal edited
AICS-0029	LaminB1	Lamin B1 (LMNB1)	Nucleus	N-terminus	tdTomato	WTC	Screening & QC
AICS-0030	LC3	Microtubule associated protein 1 light chain 3 beta (MAP1LC3B)	Autophagosomes	N-terminus	mEGFP	WTC	Screening & QC
AICS-0031	Alpha-tubulin	Tubulin-alpha 1b (TUBA1B)	Microtubules	N-terminus	mtagRFP-T	WTC	Screening & QC
AICS-0032	Centrin	Centrin 2 (CETN2)	Centrosome	N-terminus	mtagRFP-T	WTC	Screening & QC
AICS-0036	GFP	(AAVS1-CAG-GFP)	Cytoplasm		mEGFP	WTC	Screening & QC

ImageJ / Fiji

NATURE METHODS | PERSPECTIVE

-< 🖨

Fiji: an open-source platform for biological-image analysis

Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker Hartenstein, Kevin Eliceiri, Pavel Tomancak & Albert Cardona

Affiliations | Corresponding authors

Nature Methods **9**, 676–682 (2012) | doi:10.1038/nmeth.2019 Published online 28 June 2012

ImageJ / Fiji resources

http://wiki.cmci.info/documents/ijcourses#macro_programming_in_imagej

Basics

https://imagej.net/Category:Tutorials

http://imagej.net/Using_Fiji

DOI:10.5281/zenodo.51511

List of main plugins

http://imagej.net/List_of_update_sites

https://imagej.nih.gov/ij/plugins/

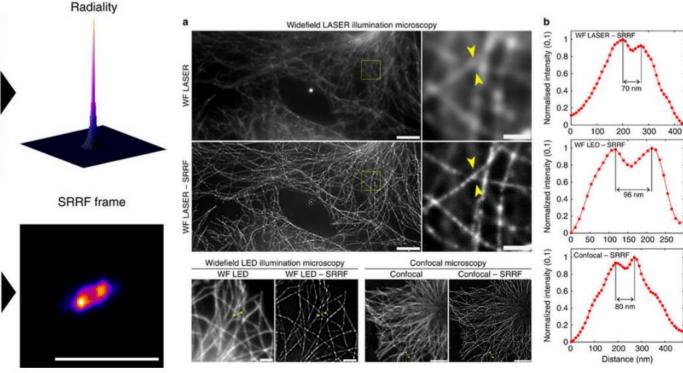
Scripting / write your own ImageJ-based software

DOI:10.5281/zenodo.30267

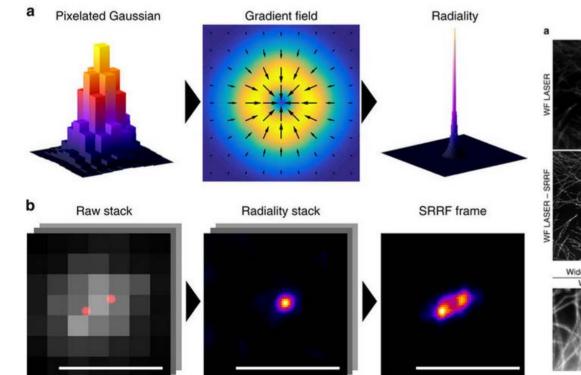
https://imagej.nih.gov/ij/developer/macro/macros.html

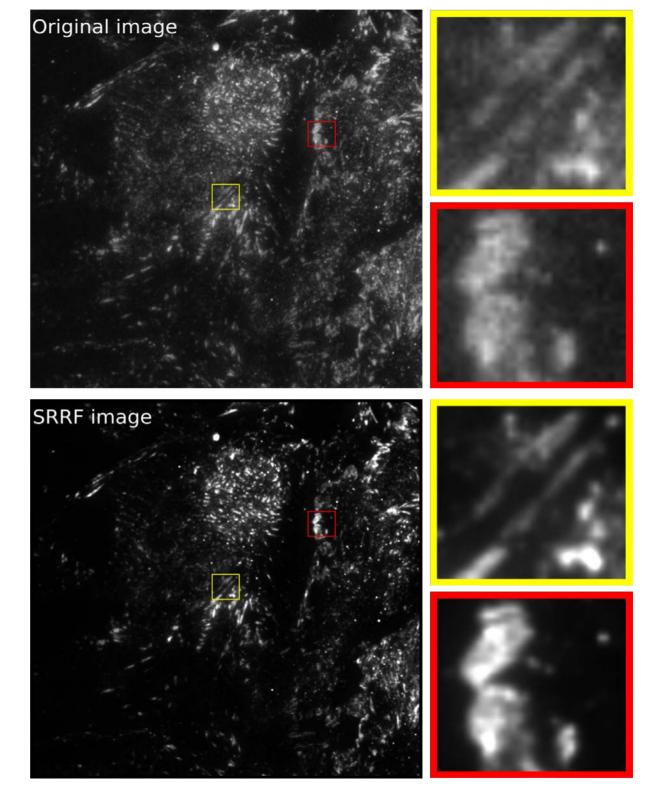
NanoJ- SRRF

- ImageJ based and Free
- Image with any microscope
- Around 80 nm Resolution


Article OPEN

Fast live-cell conventional fluorophore nanoscopy with ImageJ through superresolution radial fluctuations


Nils Gustafsson, Siân Culley, George Ashdown, Dylan M. Owen, Pedro Matos Pereira & Ricardo Henriques ™


Nature Communications **7**, Article number: 12471 (2016) <u>doi</u>:10.1038/ncomms12471 Received: 22 March 2016 Accepted: 05 July 2016 Published online: 12 August 2016

@HenriquesLab

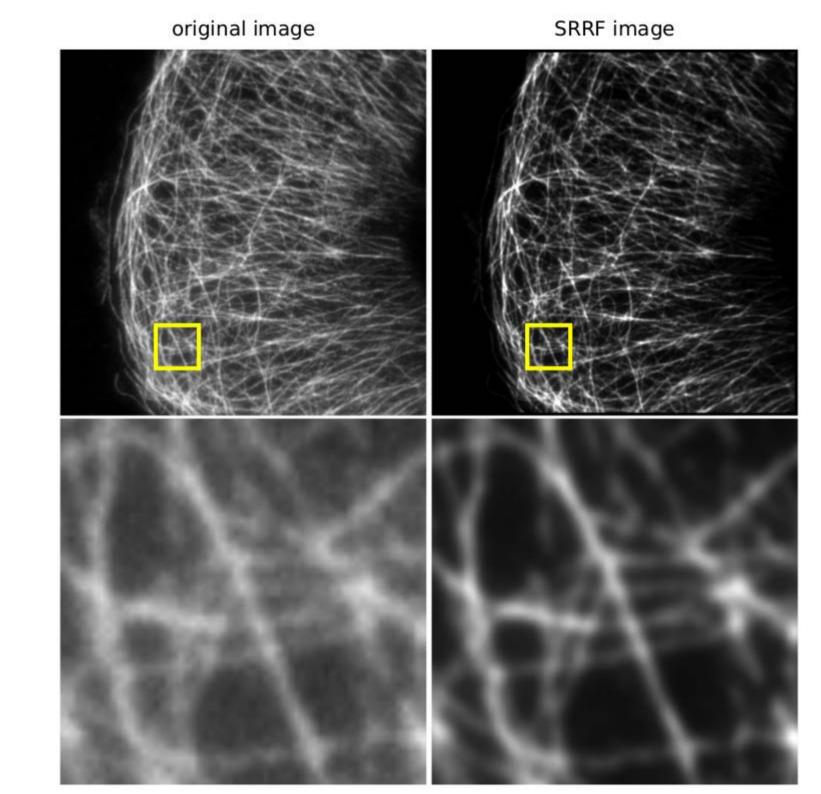


Figure 1: The SRRF algorithm.

@guijacquemet

@guijacquemet

SIM check

ImageJ based

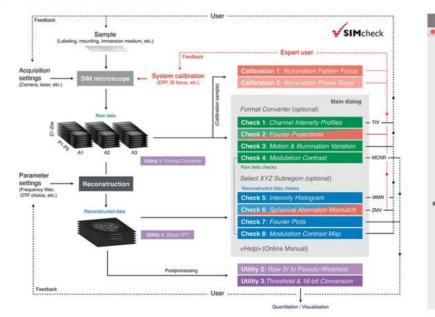
Free

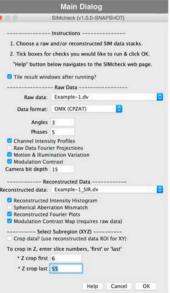
Quality control for SIM data

an open source ImageJ plugin suite for super-resolution structured illumination microscopy data quality control

Quality control

- ✓ DeltaVision OMX, Zeiss Elyra, Nikon N-SIM data format compatibility
- Raw data intensity profile (bleaching, angle variation, intensity fluctuation)
- ✓ Raw data Fourier analysis to assess illumination quality
- Motion blur and angle illumination variation
- ✓ Modulation contrast map & average modulation-contrast-to-noise ratio
- Reconstructed data histogram analysis
- ✓ Spherical aberration mismatch between sample and reconstruction OTF
- XY and Z Fourier analysis to identify reconstruction artifacts and asses frequency support vs. effective resolution
- Identification of noise reconstruction artifacts and saturated pixel
- Log-file with results & interpretation guidelines

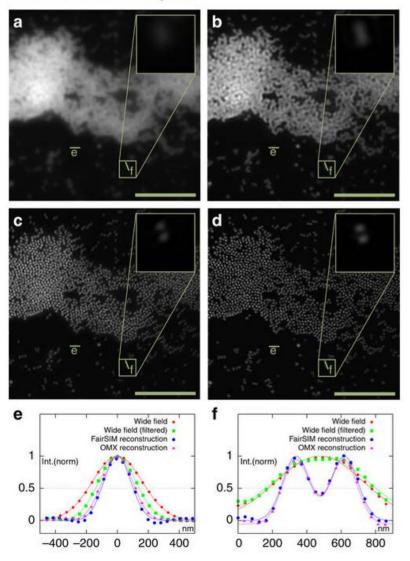

- ✓ Summary statistics table
- ✓ Online help


Calibration tools

- Axial modulation pattern focus (top-phase calibration)
- ✓ Phase stepping analysis

Utilities

- ✓ Synchronous xyz-cropping of raw and reconstructed datasets
- ✓ Format converter (Zeiss Elyra / Nikon N-SIM)
- ✓ Pseudo-widefield image generation
- Auto-threshold & 16-bit composite TIF converter
- ✓ Stack FFT (variable options)



Click here to

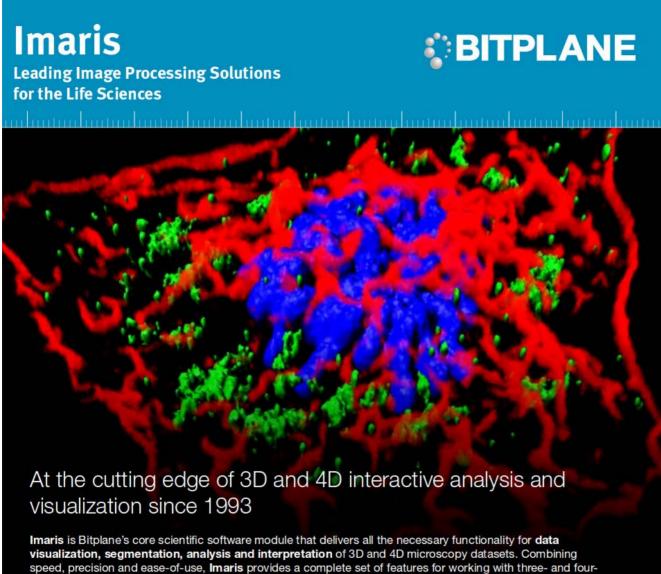
downloa

FairSIM - ImageJ based

Figure 3: FairSIM reconstruction of data sets obtained on the G Healthcare DeltaVision|OMX.

Article OPEN

Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ


Marcel Müller 🏁, Viola Mönkemöller, Simon Hennig, Wolfgang Hübner & Thomas Huser 🏁

Nature Communications **7**, Article number: 10980 (2016) doi:10.1038/ncomms10980 Download Citation

Biophysics Microscopy

Received: 16 October 2015 Accepted: 08 February 2016 Published online: 21 March 2016

Imaris 3D visualization software (CIC has a license)

dimensional multi-channel images of any size, from a few megabytes to several gigabytes.

http://www.bitplane.com/imaris/imaris

And many others

- Cell Profiler
- BiolmagexD
- MatLAB
- ...

Thank you for you attention

And Happy imaging