

Basics of Optical Microscopy

Nicolas Olivier King's College London

Imperial College London

Observing Life As It Happens

Microscopy Day FILM Facility Imperial College June 23rd 2015

Why use microscopes ?

Anatomy of a microscope

(Lots of) More complex designs exist, but we'll first stick to this ③

A microscope is ~ a light source, a detector, and some lenses in between

Anatomy of a lens

A lens converts angular information into position information

What is a microscope?

2 lenses system creating a magnified real image

Back focal plane

What is a microscope?

2 lenses system creating a magnified real image

Magnification: Geometric optics ($M = f_t/f_o$)

Since the tube lens of a microscope is standard (for each company), microscope objectives are typically defined by their magnification instead of their focal length: a 10x objective means $f_0=f_t/10$

2 lenses system creating a magnified real image

With a typical camera and 10.000 M, one pixel would be ~ 1nm \rightarrow why not ?

A microscope magnifies, but at the same time it blurs images

Light as a wave: Diffraction

The blurring comes from the wave nature of light

→ Image of a point by 2 lenses is a (~Gaussian) spot

Size of the spot: function of the <u>numerical aperture</u>

 $NA = n.sin(\theta) = n.sin(arctan(D/2f))$

n: optical index

FWHM ~ $0.51\lambda/NA$

Diffraction: consequences

~ 100x size of a molecule

Linear system:

All the information smaller than the difraction limit is lost

Resolution

In terms of convolution:

The image is the original image magnified and convoluted with a Gaussian function of size:

FWHM ~ 0.51λ /NA GFP (~520nm), NA=1.42 FWHM~178nm

Rayleight Abbe Sparrow Min distance to Distance Min distance max - first zero resolve 2 peaks for inflexion point 222 nm 171 nm 182 nm Rayleigh limit Abbe limit Sparrow limit 0.47•λ $d = \frac{0.61 \cdot \lambda}{NA}$ $d = \frac{0.50 \cdot \lambda}{NA}$ λ = 510 nm NA = 1.4

In terms of « Resolution »

Can we distinguish two neighboring objects ?

Resolution in Widefield

Linear dependence on wavelength and <u>Numerical aperture</u>:

FWHM ~ 0.51 λ /<mark>ΝΑ</mark>

NA		λ (400nm)	λ (500nm)	λ (600nm)	λ (700nm)
	NA=0.8 (air)	255	320	385	450
	NA=1.2 (water)	170	215	255	300
	NA=1.4(oil)	145	180	220	255

Super-"regular" resolution

FWHM ~ 0.51λ /NA

Decrease λ

Increase NA NA=n.sin(0)

LλIncrease nIncrease θ

Resolution in Widefield

• Linear dependence on <u>Numerical aperture</u>: FWHM (r) ~ 0.51 λ /NA

U Plan-Apo 100 objective lens with an adjustable NA (0.5–1.35)

The NA, not magnification determines the resolving power of the objective lens !

Camera and Sampling

Pizel size $< \frac{1}{2}$ * resolution~ 0.25 λ /NA

Resolution is limited by diffraction (bluring), not magnification

Commerial microscope fully characterized by magnification and Numerical aperture of objective lens

Camera needs to fulfill Nyquist criterion otherwise some information will ne lost

Looking at something specific: contrast mechanisms

Light matter interaction

These interactions can be probed using different geometries

Brightfield microscopy (transmission)

Widefield transmission microscopy:

sensitive to absorption, reflection and some scattering (absorbance)

Achieving uniform illumination

Aim : prevent image formation of light bulb in sample plane

Achieving uniform illumination

Looking at scattering: dark field

Looking at scattering: dark field

Simple darkfield:

Looking at scattering: dark field

Martin Spitaler

Reflection microscopy

Looking at optical indices: phase microscopy Zernike 1930s

Looking at optical indices: phase microscopy Zernike 1930s

Looking at optical indices: phase microscopy Zernike 1930s

Phase contrast

http://www.leica-microsystems.com/science-lab/phase-contrast/

Looking at optical indices: polarization microscopy

So far we've only looked at the intensity and phase of light, but it also has vectorial properties

The electric field can propagate along a given axis: its polarization axis

A polarizer can select a given polarization

wikipedia

Looking at optical indices: polarization microscopy

Some samples are birefringent: they can rotate the polarization of light !

Only the parts of the sample that can rotate the polarization appear bright

Birefringent Chromosomes and Spindle Fibers

http://micro.magnet.fsu.edu/

Polarizer along x Analyser along y CCD

Looking at optical indices: DIC microscopy

Differential Interference Contrast (DIC)

from 'microscopy primer' (http://micro.magnet.fsu.edu) DIC microscopy is an extension of phase contrast where two different polarizations are used

Nikon MicroscopyU

Fluorescence microscopy

Simplest and most powerful 😊

~ two level system

Organic dyes (XIX)

Ex: Rhodamine 6G C₂₈H₃₁N₂O₃Cl

Proteins: GFP : 1994-1997

Nobel Prize Chemistry 2008 Tsien, Chalfie, Shimomura

can target specific protein in living cells

Fluorescence microscopy

Fluorescence microscopy

lifetechnologies

Brightfield microscopy is easy, but has low contrast on cells

Darkfield, Phase contrast and DIC help improve the contrast through more complex optical implementations

Fluorescence allows simple high contrast specific imaging (+ lots of exciting properties : next talk, super-res)

More contrast mechanisms exist (nonlinear microscopy, ...)

Looking at something specific: contrast mechanisms 3D imaging, and tissue imaging

Confocal Microscopy

Out of focus Out of focus

Same as photography

Confocal Microscopy

Confocal Microscopy: point illumination & point detection

Minsky 1957

Illumination: excites cone of light in sample

Idea: ONLY signal created at the focal point is detected

Detection: select only light coming from one point

Instrument response = Excitation response x Detection response

Point-scanning technique: originaly sample, now laser beam

Laser-scanning Confocal Microscopy

Sheppard, Wilson, Cremer, Brakenhoff...

-Allows 3D resolution - Increases 2D resolution (up to 40% but loss of signal)

http://malone.bioquant.uni-heidelberg.de/methods/imaging/imaging.html

Nonlinear Microscopy

Imaging technique that relies on optical nonlinear effects which intensity depends nonlinearly on the excitation intensity

 \Rightarrow The nonlinear effects are confined in the focal volume

\Rightarrow Intrinsic point-scanning technique

Confocal microscopy allows 3D imaging of biological structures

3D imaging, and tissue imaging

Nonlinear microscopy extends the range of confocals for deep tissue imaging

Light-sheet microscopy uses a completely different approach to achieve the same goal

Basics of Optical Microscopy Conclusion

Lots of different microscopy methods, choose the most adapted to your sample

Magnification and resolution are different: increase resolution by decreasing λ and increasing NA

Fluorescence based-methods are very powerful as you'll see in next talk ©