Advanced microscopy for microbiology

Steven Lee

Dr Seamus Holden Centre for Bacterial Cell Biology <u>seamus.holden@ncl.ac.uk</u>

Light microscopy 101

Goal: Observe spatial and temporal organization of biology Basic concept: use light to probe a sample

Anatomy of a microscope

(Lots of) More complex designs exist, but we'll first stick to this ③

A microscope is ~ a light source, a detector, and some lenses in between

Brightfield microscopy (transmission)

Widefield transmission microscopy:

sensitive to absorption, reflection and some scattering (absorbance)

Phase microscopy methods

- Methods such as Phase Contrast achieve much higher contrast transmitted light imaging
- By imaging changes in sample refractive index between cell and surrounding media.

Phase microscopy methods

- Methods such as Phase Contrast achieve much higher contrast transmitted light imaging
- By imaging changes in sample refractive index between cell and surrounding media.

http://www.leica-microsystems.com/science-lab/phase-contrast,

Phase microscopy methods

Fluorescence microscopy

Simplest and most powerful ©

~ two level system

Excited State S1

Em∝ Ex

Ground State S0 🚃

Vibrational levels

Lifetime: ~1-5 ns

Organic dyes (XIX)

Ex: Rhodamine 6G C₂₈H₃₁N₂O₃Cl

Proteins: GFP : 1994-1997

Nobel Prize Chemistry 2008 Tsien, Chalfie, Shimomura

can target specific protein in living cells

Fluorescence microscopy

Fluorescence microscopy

lifetechnologies

Super-resolution and single molecule imaging for microbiology

- These techniques dramatically increase resolution and allow us to probe the behaviour of single proteins in live cells
- Revolutionary throughout biology
- But particularly useful in bacteria due to their small size and their relative simplicity

Single molecule microbiology

Biology works at the single molecule level!

Examples:

- Chromosome is a single molecule!
- Gene expression is performed by a single molecule nanomachine - RNA polymerase
- Cell wall remodelling is performed by single multi-enzyme complexes

Nguyen et al PNAS 2015

Single molecule microbiology

Different copies of a protein will be in multiple different states in the cell Eg, RNAP bound/ unbound to DNA:

"Ensemble" methods average over these different states -To get accurate information we need to measure one molecule at a time

Diffraction poses serious problems in bacteria...

Diffraction limits the resolution of light microscopy:

Huang et al, Cell (2010)

In practice this is a serious limitation!

Super-resolution microscopy resolves this problem

Diffraction limits the resolution of light microscopy:

Huang et al, Cell (2010)

In practice this is a serious limitation!

Super-resolution microscopy to the rescue...

Super-resolution methods

Resolution: 20 nm

100 nm

Localization microscopy: principle

A PALM/STORM

Key concept: photoactivation / photoswitching

Acquisition sequence:

It's all about making fluorophores blink!

Photoactivatable fluorescent proteins:

Photoswitchable organic dyes

... and then finding their centres

Stochastic Optical Reconstruction Microscopy (STORM)/ Photoactivation Localization Microscopy (PALM)

Betzig et al., Science (2006) Rust et al, Nat. Methods (2006) Hess et al., Biophys. J. (2006)

STORM over the Eiffel Tower

Bacteria's small size is a big problem

Spatial resolution

XY: 25 nm **Z:** 100 nm

Super-resolution microscopy allows *in vivo* imaging of bacterial ultrastructure

Spatial resolution

XY: 25 nm **Z:** 100 nm

Time (typ.): 3 – 5 mins **Time (best):** 2 s (FPs), 30 ms (dyes)

Advantages:

- Highest resolution of SR microscopies
- Single molecule information

Disadvantages:

- high laser powers
- \rightarrow phototoxicity
- \rightarrow Best for fixed cells

0.5 μm

Localization microscopy: applications

RNA polymerase

CheY

FtsZ

DNA polymerase

Crescentin

Endesfelder, Finan, Holden et al., *Biophys J.* (2013) Holden et al, *PNAS* (2014) Greenfield et al, *Plos Biol* (2009) Lew et al, PNAS (2011) Uphoff et al, *PNAS* (2013)

FtsZ ultrastructure

Diffraction limited imaging of the cell division cytoskeletal "Z-ring" look continuous:

Sun & Margolin J. Bac 1998

Consistent with the idea of a force generating constrictive ring:

Erickson et al. Mirco & Mol Bio Rev 2010

Super-resolution suggests a patchy Z-ring

C. crescentus 3D PALM

Holden et al PNAS 2014

E. coli 2D PALM

Buss et al PLoS Genetics 2015

Chemotaxis sensors

Tar proteins senses chemicals outside of cell Large clusters of Tar act cooperatively to amplify signals How are clusters organised?

Chemotaxis sensors

Continuously varying distribution of cluster sizes

- \rightarrow Suggests stochastic nucleation (ie no defined cluster size)
- \rightarrow Potential explanation for spontaneous polar clusters

Structured illumination microscopy: principle

Moire fringes project high frequency information (invisible) to lower frequency

Example in practice:

http://zeiss-campus.magnet.fsu.edu/tutorials/superresolution/hrsim/indexflash.html

Related techniques: iSIM, Airyscanning

Moiré fringes Wikipedia Rego, Shao, Methods Mol Biol 2015

Resolution

Spatial resolution XY: 115 nm Z: 350 nm

E. coli RecA

Lesterlin et al Nature 2014

Advantages:

+ FAST!

- + Low-ish laser power
- \rightarrow Low phototoxicity
- \rightarrow Extended time lapse
- + Really good at multicolour

Disadvantages:

 "Only" doubles diffraction limited resolution

Time (typ.): 0.6-1 s

SpolllE DNA pump recruitment to *B. subtilis* septation sites

SpoIIIE is a translocase – pumps chromosome into forespore Directly visualized localization to leading edge of closing septum

Fiche et al PLoS Biol 2013

Stimulated Emission Depletion microscopy

Resolution: 50 nm. Time resolution: 1-2s

- Works for ordinary dyes & fluorescent proteins
- 2 colour is not too complex.
- Similar workflow to confocal -> reasonably straightforward (with help of a good technician)
- Bleaching is a big issue \rightarrow only works for very bright samples

STED of cell division proteins

- STED shows that E. coli FtsZ and FtsN do not colocalize. (Rather interface at the membrane?)
- Patchiness: imaging artefact vs real is always a concern → best image by multiple techniques.

Single molecule imaging

- Closely related to localization microscopy
- Key techniques
 - Single molecule tracking
 - Molecule counting

Hussain et al eLife 2018

Single molecule gene expression

One of the earliest really powerful applications of single molecule imaging Proteins are expressed and observed in real time *Direct observation* of "bursty" expression

- ie. multiple protein expressed rapidly after transcription of a single mRNA

Single molecule tracking: principle

Woll et al Phy Chem Chem Phys 2013

These days often combined with photoactivation to obtain 1000s of tracks → Single particle tracking PALM (sptPALM) – extremely powerful

Can study the binding/ diffusion of **all** the copies of a labelled protein in a cell

Manley et al Nat Methods 2008

Single molecule tracking of E. coli DNA polymerase I

DNAP I is a repair polymerase Track its motion:

- Fast diffusion DNA unbound
- Slow diffusion DNA bound

Single molecule tracking of E. coli DNA polymerase I

Direct observation of DNAPs actively repairing DNA gaps & nicks

- Repair times
- Search times

Single molecule counting by photobleaching

Watch foci bleach step-by-step → Tells you how many proteins are in the focus

Single molecule counting by photobleaching

Very cool paper

By measuring numbers of all the key replisome proteins, determined in vivo stoichiometry of replisome

They found an extra polymerase!

Single molecule counting by localization microscopy

Since you localize the molecules one-by-one, why not count them?

Potentially very powerful for large complexes where photobleaching would not work BUT - determining absolute numbers (rather than relative stoichiometry) is an ongoing challenge - mainly due to difficulty establishing 'dark' fraction of FPs Need good "counting standards"

Quantitative image analysis for microbiology

Images are not just pretty pictures!

Image analysis lets us analyse cell shape and protein localization in space and time

Extensive user-friendly tools allow us to quantify:

- Intensity
- Cell number
- Cell morphology
- Subcellular localization of proteins
- 3D rendering
- And more...

If you use a microscope *at all* in your research, this is probably useful to you.

FIJI/ ImageJ

- The standard image processing tool in biology: https://imagej.net/Fiji
- Easy to use
- Immensely powerful due to enormous array of plugin for almost any image processing task
- Open source = open reproducible science

Quantitative image analysis for microbiology: examples

Quantitative image analysis for microbiology: examples

Cell shape

Protein localization

Cell cycle dependent protein localization (kymographs)

The recent BactMAP paper has a nice summary of the microbiology packages : van Raaphorst et al, Mol Micro, 2019

https://fiji.sc/ https://www.biodip.de http://www.microbej.com http://oufti.org/

Quantitative image analysis for microbiology: examples

Single cell growth rates

Fiji

https://fiji.sc/ https://www.biodip.de http://www.microbej.com http://oufti.org/

A note about deep learning

- 1. Pre-train a computational neural network
- 2. Use that network as a classifier or image filter
- 3. Profit

Deep convolutional neural nets have tremendous potential...

https://www.youtube.com/watch?v=_OqMkZNHWPo

Also in the life sciences

Deep learning based denoising:

Dramatically improve image quality of noisy data with DL

- \rightarrow More images with less light
 - \rightarrow Higher time resolution
 - \rightarrow Happier cells

 \rightarrow Just beginning to be adopted but potentially game changing

"Conventional" denoising is already pretty awesome

- Finds correlated patches in space & time
- Only assumption is Poisson + Gaussian noise
- <u>No assumptions</u> on sample structure
- Preserves edges and intensities
- Enhances SNR
- Reduces light dose
- "for free"
- Straightforwardly available for ImageJ http://bigwww.epfl.ch/algorithms/denoise/

In my lab, we use this on almost every single image

Image denoising allows extended FtsZ-ring imaging at very low light levels

LIVE DEMO OF IMAGEJ & MICROBEJ

Resources: FIJI - the standard image processing tool in biology: <u>https://imagej.net/Fiji</u> MicrobeJ <u>https://www.microbej.com/</u> MicrobeJ YouTube channel: <u>https://www.youtube.com/channel/UC_CxvjXezYXE9xgRIP7cK5Q</u>

Test data Caulobacter.tif on Canvas

Lots of great online courses, especially for FIJI

Summary

• Advanced microscopy and image analysis are immensely powerful tools for microbiology

References

Betzig, E., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645. doi:10.1126/science.1127344

Buss, J., Coltharp, C., Shtengel, G., Yang, X., Hess, H., Xiao, J., 2015. A Multi-layered Protein Network Stabilizes the Escherichia coli FtsZ-ring and Modulates Constriction Dynamics. PLoS Genet 11, e1005128. doi:10.1371/journal.pgen.1005128

Coltharp, C., Xiao, J., 2012. Superresolution microscopy for microbiology. Cellular Microbiology 14, 1808–1818. doi:10.1111/cmi.12024

Endesfelder, U., Finan, K., Holden, S.J., Cook, P.R., Kapanidis, A.N., Heilemann, M., 2013. Multiscale Spatial Organization of RNA Polymerase in Escherichia coli. Biophysical Journal 105, 172–181. doi:10.1016/j.bpj.2013.05.048

Erickson, H.P., Anderson, D.E., Osawa, M., 2010. FtsZ in Bacterial Cytokinesis: Cytoskeleton and Force Generator All in One. Microbiol. Mol. Biol. Rev. 74, 504–528. doi:10.1128/MMBR.00021-10

Fiche, J.-B., Cattoni, D.I., Diekmann, N., Langerak, J.M., Clerte, C., Royer, C.A., Margeat, E., Doan, T., Nöllmann, M., 2013. Recruitment, Assembly, and Molecular Architecture of the SpolIIE DNA Pump Revealed by Superresolution Microscopy. PLoS Biol 11, e1001557. doi:10.1371/journal.pbio.1001557

Greenfield, D., McEvoy, A.L., Shroff, H., Crooks, G.E., Wingreen, N.S., Betzig, E., Liphardt, J., 2009. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 7, e1000137. doi:10.1371/journal.pbio.1000137

Henriques, R., Lelek, M., Fornasiero, E.F., Valtorta, F., Zimmer, C., Mhlanga, M.M., 2010. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Meth 7, 339–340. doi:10.1038/nmeth0510-339

Hess, S.T., Girirajan, T.P.K., Mason, M.D., 2006. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophysical Journal 91, 4258–4272. doi:10.1529/biophysj.106.091116

Holden, S.J., Pengo, T., Meibom, K.L., Fernandez, C.F., Collier, J., Manley, S., 2014. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. PNAS 111, 4566–4571. doi:10.1073/pnas.1313368111

Huang, B., Babcock, H., Zhuang, X., 2010. Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells. Cell 143, 1047–1058. doi:10.1016/j.cell.2010.12.002 Lesterlin, C., Ball, G., Schermelleh, L., Sherratt, D.J., 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506, 249–253. doi:10.1038/nature12868

Lew, M.D., Lee, S.F., Ptacin, J.L., Lee, M.K., Twieg, R.J., Shapiro, L., Moerner, W.E., 2011. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. Proceedings of the National Academy of Sciences 108, E1102–E1110. doi:10.1073/pnas.1114444108

Manley, S., Gillette, J.M., Patterson, G.H., Shroff, H., Hess, H.F., Betzig, E., Lippincott-Schwartz, J., 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods 5, 155–157. doi:10.1038/nmeth.1176

Nguyen, L.T., Gumbart, J.C., Beeby, M., Jensen, G.J., 2015. Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. PNAS 112, E3689–E3698. doi:10.1073/pnas.1504281112

Reyes-Lamothe, R., Sherratt, D.J., Leake, M.C., 2010. Stoichiometry and Architecture of Active DNA Replication Machinery in Escherichia coli. Science 328, 498–501. doi:10.1126/science.1185757

Rust, M.J., Bates, M., Zhuang, X., 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795. doi:10.1038/nmeth929

Stracy, M., Lesterlin, C., Leon, F.G. de, Uphoff, S., Zawadzki, P., Kapanidis, A.N., 2015. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. PNAS 112, E4390–E4399. doi:10.1073/pnas.1507592112

Sun, Q., Margolin, W., 1998. FtsZ Dynamics during the Division Cycle of LiveEscherichia coli Cells. J. Bacteriol. 180, 2050–2056.

Uphoff, S., Reyes-Lamothe, R., Garza de Leon, F., Sherratt, D.J., Kapanidis, A.N., 2013. Single-molecule DNA repair in live bacteria. Proc. Natl. Acad. Sci. U.S.A. 110, 8063–8068. doi:10.1073/pnas.1301804110

Wöll, D., Kölbl, C., Stempfle, B., Karrenbauer, A., 2013. A novel method for automatic single molecule tracking of blinking molecules at low intensities. Phys. Chem. Chem. Phys. 15, 6196–6205. doi:10.1039/C3CP44693J

Yu, J., Xiao, J., Ren, X., Lao, K., Xie, X.S., 2006. Probing Gene Expression in Live Cells, One Protein Molecule at a Time. Science 311, 1600–1603. doi:10.1126/science.1119623